Appendix E:

South Coast AQMD Phase II Assessment Study of Architectural Coatings by National Technical Systems.

SCAQMD Phase II Assessment Study of Architectural Coatings by National Technical Systems

(Summarized by the California Air Resources Board)

Objective: Compare performance characteristics of higher VOC coatings with lower VOC coatings via laboratory, field application, and long term exposure tests.

Coating Categories Examined:

1. Industrial Maintenance

Primer

Topcoat

Systems

2. Nonflat - Interior & Exterior

Primer

Topcoat

System

- 3. Primers, Sealers, & Undercoaters Interior & Exterior
- 4. Quick Dry Primers, Sealers, & Undercoaters Interior & Exterior
- 5. Quick Dry Enamels Interior & Exterior

Topcoat

System

6. Waterproofing Sealers

Concrete

Wood

Total # of manufactuers or brands - 31

Total # of coatings - 94

Total # of systems - 46

Total # of test panels - 3000+

Comments:

The summary and analysis provided by ARB staff in the following pages represents laboratory testing data available (as of April 2000) from the SCAQMD "Phase II Assessment Study of Architectural Coatings" and their contractor National Technical Systems (NTS). Conclusions are based on the data supplied. The field application and long term exposure tests are currently ongoing.

Members of the Technical Advisory Committee (also referred to as the "TAC")

Name Company / Organization

Harley Fung Benjamin Moore & Co

Mike Jaczola CARB

Jim Nyarady

Tim Carmichael Coalition for Clean Air

Robert Wendoll Dunn-Edwards

Steve Murphy Murphy Industrial Coatings

Naveen Berry SCAQMD

Madelyn Harding Sherwin-Williams

Alexander Ramig Sierra Performance Coatings

Yin Aye Smiland Paint Co

David Leehy Vista Paints

	# of		# of
	Coatings		Coatings
Manufactuers ·	in Study	Manufactuers	in Study
Advanced Polymer Sciences	1	Insl-X	1
Ameron Protective Coatings	2	Masterchem	1
Aquarius Coatings	1	Morewear	3
Behr Process	3	OKON, Inc.	1
Benjamin Moore	8	PPA Technologies	3
Coatings Resources Corp.	2	Seal-Krete, Inc.	1
Dunn Edwards	11	Sherwin Williams	7
EMU	1	Sigma Coatings	2
Flood Company	1	Superior Environmental Products	2
Frazee Industries	6	TCA	2
GaLXE-2010	4	Thompson's	1
Gloucester Company	1	Tnemec	7
H&C	2	Vista Paints	4
Hart Polymers	3	X-I-M Products	1
ICI/Devoe	6	Zehrung	2
ICI/Glidden	4		
		Total	94

Coating Categories by Section:

The original grouping of data by NTS is shown on the next page. The following represents the coating categories included in the NTS performance study reorganized by category in alphabetical order. Please note that although the coating categories are in alphabetical order, the section numbers are not in numerical order.

Category	Section
Industrial Maintenance	
Primer	1
Topcoat	2 3
Systems	3
Nonflat - Interior	
Primer	4
Topcoat	6
System	8
Nonflat - Exterior	
Primer	5
Topcoat	7
System	9
Primers, Sealers, & Undercoaters - Interior	4
Primers, Sealers, & Undercoaters - Exterior	5
Quick Dry Primers, Sealers, & Undercoaters - Interior	4
Quick Dry Primers, Sealers, & Undercoaters - Exterior	5
Quick Dry Enamels - Interior	
Primers	4
Topcoat	6
System	8
Quick Dry Enamels – Exterior	
Primers	5
Topcoat	7
System	9
Waterproofing Sealers	
Concrete	10
Wood	11

Original Test Groups or Summaries as Organized by NTS

Industrial Maintenance - Primer (Section 1)

Industrial Maintenance - Topcoat (Section 2)

Industrial Maintenance - System (Section 3)

Nonflat Primer, Quick Dry Primer, and Primer Sealer Undercoater - Interior (Section 4) Nonflat Primer, Quick Dry Primer, and Primer Sealer Undercoater - Exterior (Section 5)

Nonflat Topcoat and Quick Dry Topcoat - Interior (Section 6) Nonflat Topcoat and Quickdry Topcoat - Exterior (Section 7)

Nonflat System and Quick Dry System - Interior (Section 8) Nonflat System and Quick Dry System - Exterior (Section 9)

Water Proofing Sealer – Concrete (Section 10) Water Proofing Sealer – Wood (Section 11)

Section 1: Industrial Maintenance Primer

Total # manufactuers or brands	11
Single component coatings	8
Multi-component coatings	10
Total # coatings	18

Test Summary

Brushing Properties Wet:

• Low VOC coatings exhibited similar performance compared to high VOC coatings.

Brushing Properties Dry:

• Low VOC coatings exhibited similar performance compared to high VOC coatings.

Dry Time - Dry To Touch:

• Low VOC coatings required longer dry times compared to high VOC coatings.

Dry Time - Dry Hard:

• Low VOC coatings required longer dry times compared to high VOC coatings.

Contrast Ratio (Hiding Power):

• Low VOC coatings exhibited lower performance compared to high VOC coatings.

Spreading Rate:

• Low VOC coatings exhibited similar performance compared to high VOC coatings.

Leveling:

Low VOC Coatings exhibited similar performance compared to high VOC coatings.

Sag Resistance:

• Low VOC coatings exhibited similar performance compared to high VOC coatings.

Hiding Wet to Dry Changes:

• Low VOC coatings exhibited similar performance compared to high VOC coatings.

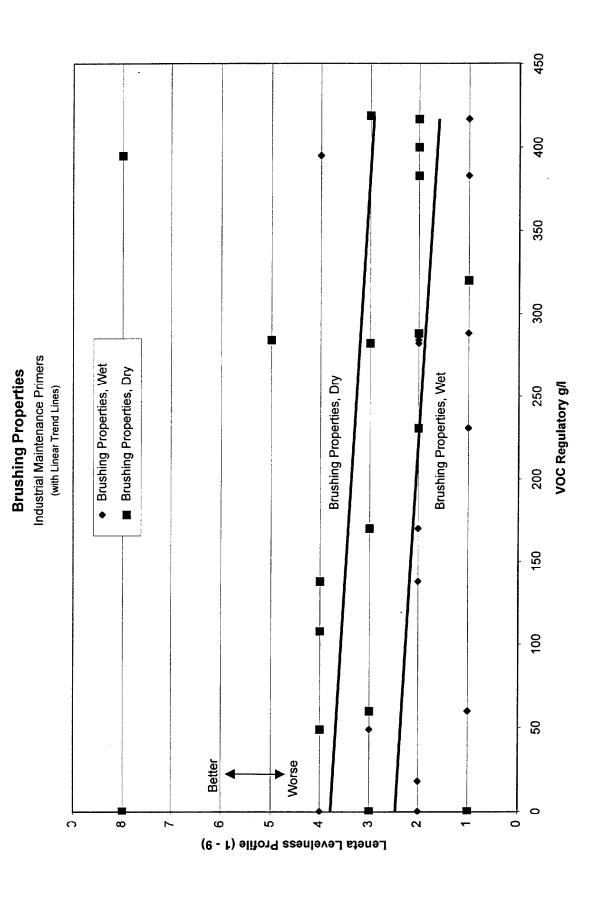
Taber Abrasion Resistance:

• Low VOC coatings exhibited lower performance compared to high VOC coatings.

Dry Film Thickness:

Low VOC coatings exhibited slightly higher dry film thicknesses compared to high VOC coatings.

Film Flexibility:

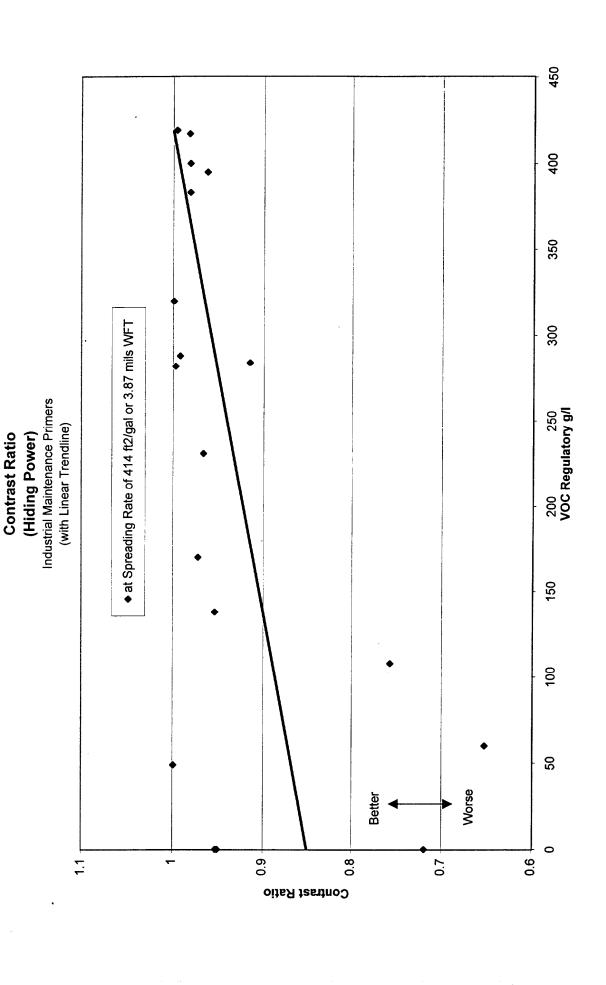

• Fourteen out of 18 coatings passed this test. The four coatings that failed had VOC contents of 0 g/l, 0 g/l, 60 g/l, and 320 g/l.

Comments:

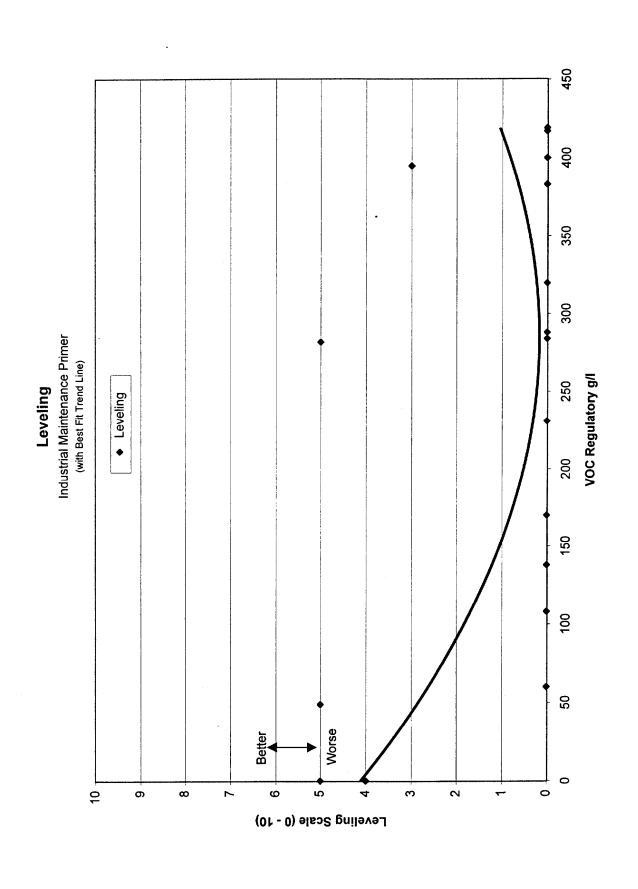
Overall, low VOC coatings exhibited similar performance compared to high VOC coatings.

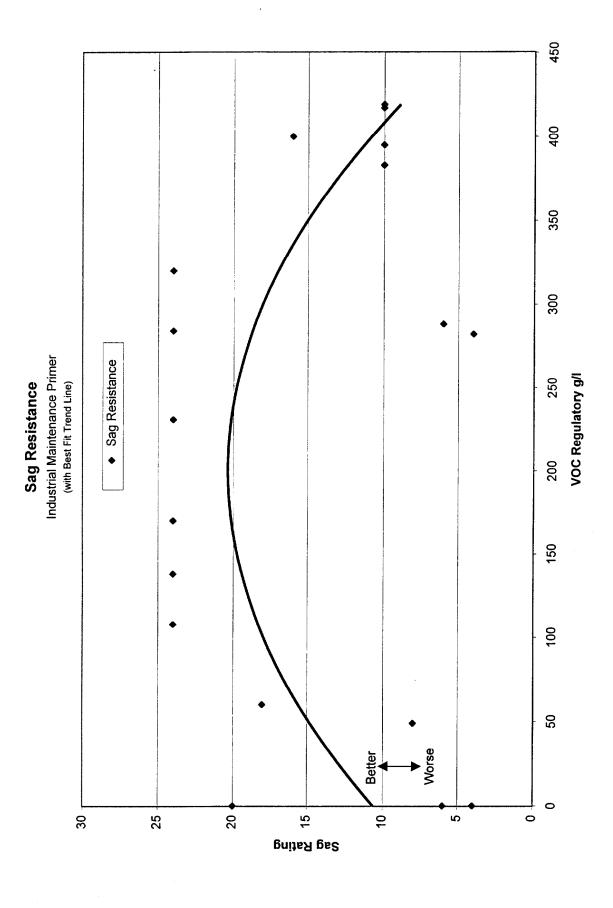
Industrial Maintenance Primer

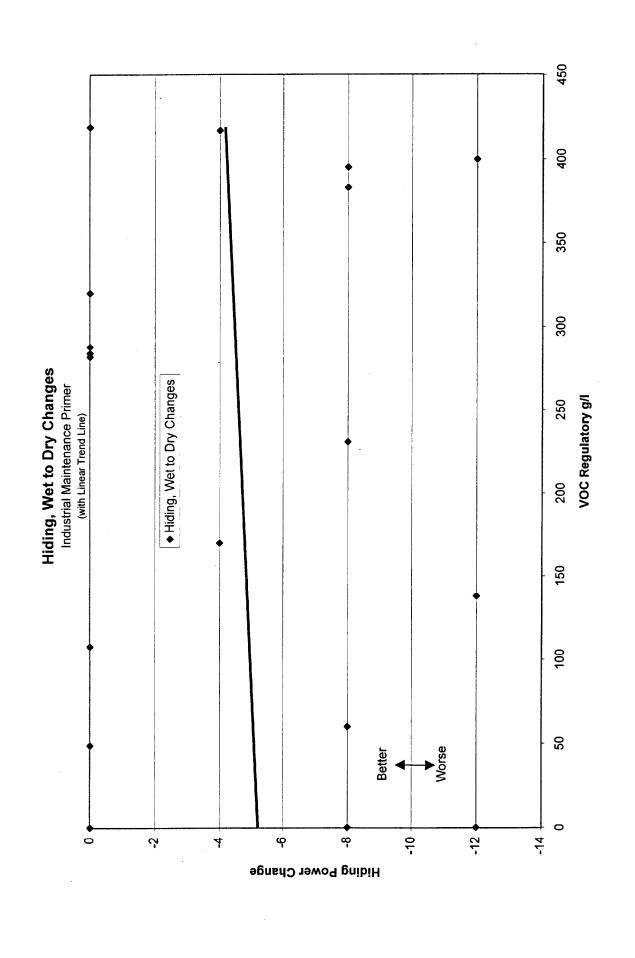
Coating Reference Designator	VOC, g/l	Part	Polymer Class	Intended Application	Tota
901	108	2	Siloxirane	Т	1
920	288	2	Ероху	Р	1
917	417	1	Alkyd	P	1
910	0	2	Ероху	Р	1
902	400	1	Epoxy Ester	Р	1
914	0	2	Butadiene-Epoxy	Р	1
919	170	2	Ероху	Р	1
933	282	2	Inorganic Zinc Silicate	Р	1
932	284	2	Ероху	Τ	1
930	419	1	Alkyd	Р	1
906	138	1	Acrylic	P	1
904	49	1	Organic Zinc	Р	1
908	60	1	Acrylic	P	1
912	0	2	Novolac	Р	1
925	395	2	Ероху	T	1
923	382	1	Alkyd	P	1
922	231	1	Acrylic	Т	1
927	320	2	Ероху	Р	1
Grand Total				•	18



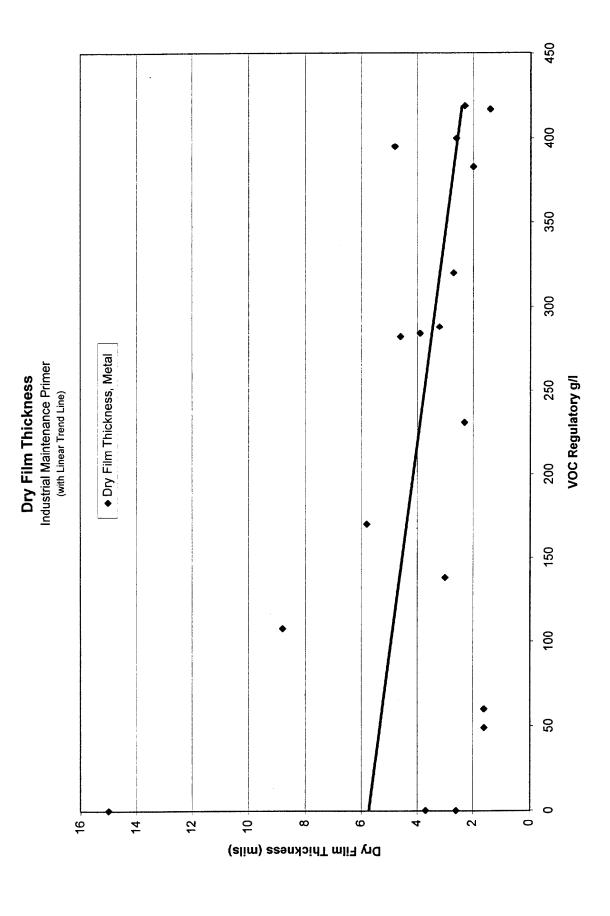
450 400 350 300 Industrial Maintenance Primers VOC Regulatory g/I 250 ■90 degrees F, 30% RH (minutes) • 50 degrees F, 90% RH (minutes) (with Linear Trend Lines) 200 50 degrees F, 90% RH 150 ■ 90 degrees F, 30% RH 100 20 200.0 50.0 0.0 150.0 100.0 250.0 Minutes


Dry Time - Dry To Touch


450 400 350 300 ■90 degrees F, 30% RH (minutes) ◆ 50 degrees F, 90% RH (minutes) VOC Regulatory g/I 250 90 degrees F, 30% RH 200 50 degrees F, 90% RH 150 100 20 0 0.0 400.0 350.0 300.0 250.0 200.0 150.0 100.0 50.0 Minutes


Dry Time - Dry Hard
Industrial Maintenance Primers
(with Linear Trend Lines)

Spreading Rate
Industrial Maintenance Primers
(with Linear Trendline) VOC Regulatory g/l Spreading Rate Worse Better TTW lim 86.5 is lsg/Sif



Industrial Maintenance Primer (with Linear Trend Line) VOC Regulatory g/I Cycles to wear through coating

Taber Abrasion Resistance

															,		_	,		
2.4	Leveling	Scale, 0-10	5	4	ç	5	0	0	0	0	0	5	0	0	0	0	3	0	0	0
3.14	Spreading Rate		482	324	485	458	368	419	326	429	383	657	448	200	462	317	408	448	406	384
3.14	Contrast Ratio (Cw) Hiding Power	at Spreading Rate of 414 ft2/gal or 3.87 mils WFT	0.952	0.95	0.719	0.999	0.652	0.757	0.953	0.972	0.966	0.997	0.915	0.992	666.0	0.981	0.962	0.981	0.982	966.0
2	Dry time, Dry Hard	90 degrees F, 30% RH (minutes)	337.5	212.7	7.762	304.2	4.0	298.5	10.5	48.9	71.1	155.1	181.8	357.1	24.6	12.4	263.4	76.0	215.2	20.1
2.2	One Part Coatings	50 degrees F, 90% RH (minutes)	349.2	349.2	363.2	358.8	15.9	353.2	67.3	206.5	360.0	179.2	328.9	358.0	36.9	44.5	358.9	157.3	236.5	6.3
2.2	Dry time, Dry to Touch - One Part	90 degrees F, 30% RH (minutes)	136.5	75.6	3.7	22.5	1.0	5.1	3.0	18.5	3.0	9.9	41.1	4.6	2.4	3.1	6.72	3.1	4.0	6.0
7	Coatings	50 degrees F, 90% RH (minutes)	90.6	191.1	6.1	4.8	3.0	6.1	2.5	27.1	31.8	5.5	1.6	1.9	3.3	1.9	6.4	7.3	2.8	2.7
2.1	Brushing Properties, Dry	Leneta Levelness Profile, 1 - 9	⊽	8	e	4	ဧ	4	4	e	2	8	5	2	۶	2	8	2	2	3
2.1	Brushing Properties, Wet	Leneta Levelness Profile, 1 - 9	2	4	2	3	-	4	2	2	-	2	2	-	۲	1	4	2	1	2
	Density	lbs/gal	10.18	9.75	9.95	23.65	12.19	12.59	11.26	12.82	12.01	19.01	11.48	11.71	28.53	12.31	12.5	11.98	11.89	11.49
	Coarse Particles	Size in Microns	20	-87	24	24	24	36	20	96	8	8	4	72	100	56	24	85	09	32
	Nonvolatile by Weight	%	61.5	89.2	66.3	84.3	60.4	95.16	59.1	89.2	59.5	79.4	73.8	2.39	91.5	75.6	77.3	74.1	71.7	65.4
	Polymer Class		Epoxy	Novolac	Butadine-Epoxy	Epoxy-Polyamide, Zinc-nch	Acrylic	Siloxirane	Acrylic	Ероху	Acrylic	Inorganic Zinc Silicate	Ероху	Ероху	Epoxy	Alkyd	Epoxy	Epoxy Ester	Alkyd	Alkyd
	VOC Content	g/l	0	0	0	64	9	108	138	170	231	282	284	288	320	383	395	400	417	419
est	Coating Reference Designator		IMC10	IMC12	IMC14	IMC4	IMC8	IMC1	IMC6	IMC19	IMC22	IMC32	IMC31	IMC20	IMC26	IMC23	IMC25	IMC2	IMC17	IMC29
Protocol Test Number	Coating Reference Number	Units	910	912	914	904	806	96	906	919	922	933	932	920	827	923	925	905	917	930

SCAQMD NTS STUDY

SCAQMD NTS STUDY

3.9	Film Flexibility	pass/fail	Fail	Fail	Pass	Pass	Pass	Fail	Pass	Pass	Pass	Pass	Pass	Pass	Fail	Pass	Pass	Pass	Pass	Pass
3.10	Dry Film Thickness, Metal	mils	3.7	15	2.6	1.6	1.6	8.8	en en	5.8	2.3	4.6	3.9	3.2	2.7	2	4.8	2.6	4:1	2.3
3.2	Appearance and Finish, Coted Panels		satin, yellowed	gloss, uniform	satin flat, gelled particles	eggshell, smooth	satin, uniform	glossy, grainy	flat, smooth	satin, uniform	uniform, flat, w/rust spots	uniform, flat	smooth, satin	uniform, flat	uniform, flat	smooth, matte	smooth, satin	eggshell, uniform	smooth matte	uniform, flat
3.2	Appeårance and Finish, Drawdown Charts		glossy, uneven	glossy, grainy	satin flat, gelled particles	eggshell, smooth	flat, uniform	semi gloss, grainy	matte, smooth	satin flat, uniform	uniform, flat	uniform, flat	smooth, satin	uniform, flat	uniform, flat	smooth, matte	smooth, satin	matte, smooth	smooth eggshell	smooth, satin
	Abrasion Resistance, Taber	Wear Index or Cycles to Expose Substrate	N/A	N/A	N/A	N/A	N/A	36.3	N/A	N/A	156.4	N/A	139.7	N/A	N/A	N/A	138.3	N/A	N/A	N/A
	Wet Film/Dry	Mils, #80 Rod	4.7	5.4	4.5	4.5	2.1	6.0	3.5	5.4	2.5	4.6	4.6	4.7	6.0	3.4	3.5	3.2	3.4	3.8
	Film/WW & Bar Applicator Gap	Mils, #48 Rod	3.3	3.7	3.2	3.0	2.3	4.9	2.6	3.4	2.1	3.1	2.9	3.5	4.2	2.6	2.9	2.4	2.2	2.7
	Relationships	Mils, #30 Rod	2.2	3.5	2.8	2.2	2.2	3.4	2.6	3.3	1.5	2.8	1.9	2.2	4.3	2.4	2.4	2.1	2.0	1.8
		Mils,#80 Rod	6.5	6.5	10.5	7.5	7.5	9.5	8.5	6.5	8.0	8.5	9.5	8.5	10.5	8.5	8.5	7.5	8.5	9.5
	Wet Film Thickness	Mils, #48 Rod	4.5	4.5	6.5	6.5	5.5	5.5	6.5	4.5	5.0	4.5	5.5	5.5	6.5	6.5	6.5	5.5	6.5	4.5
		Mils, #30 Rod	4.5	4.5	6.5	3.5	5.5	4.0	5.5	4.5	4.5	4.5	3.5	3.5	4.5	4.5	3.5	4.5	4.5	3.5
2.10	Hiding, Wet to Dry Changes		0	8	12	0	8	0	12	4	8	0	0	0	0	8	8	12	4	0
2.7	Sag Resistance	Notch Clearance in mils	\$	9	20	8	18	>24	>24	>24	>24	4	24	9	>24	10	10	16	10	10
est	Coating Reference Designator		IMC10	IMC12	IMC14	IMC4	IMCB	IMC1	IMC6	IMC19	IMC22	IMC32	IMC31	IMC20	IMC26	IMC23	IMC25	IMC2	IMC17	IMC29
Protocol Test Number	Coating Reference Number	Units	910	912	914	904	808	901	906	919	922	933	832	920	927	923	925	902	917	830

Section 2: Industrial Maintenance Topcoat

Total # manufactuers or brands	11
Single component coatings	6
Multi-component coatings	13
Total # coatings	21

Test Summary

Brushing Properties Wet:

• Low VOC coatings exhibited similar performance compared to high VOC coatings.

Brushing Properties Dry:

• Low VOC coatings exhibited similar performance compared to high VOC coatings.

Dry Time - Dry To Touch:

• Low VOC coatings required longer dry times compared to high VOC coatings.

Dry Time - Dry Hard:

• Low VOC coatings required similar dry times compared to high VOC coatings.

Contrast Ratio (Hiding Power):

• Low VOC coatings exhibited slightly lower performance compared to high VOC coatings.

Spreading Rate:

Low VOC coatings exhibited lower performance compared to high VOC coatings.

Leveling:

• Three Low VOC coatings exhibited similar performance compared to high VOC coatings. Five of the coatings within the 50 g/l to 275 g/l range exhibited poor performance.

Sag Resistance:

• Low VOC coatings exhibited similar performance compared to high VOC coatings.

Hiding Wet to Dry Changes:

Low VOC coatings exhibited similar performance compared to high VOC coatings.

Taber Abrasion Resistance:

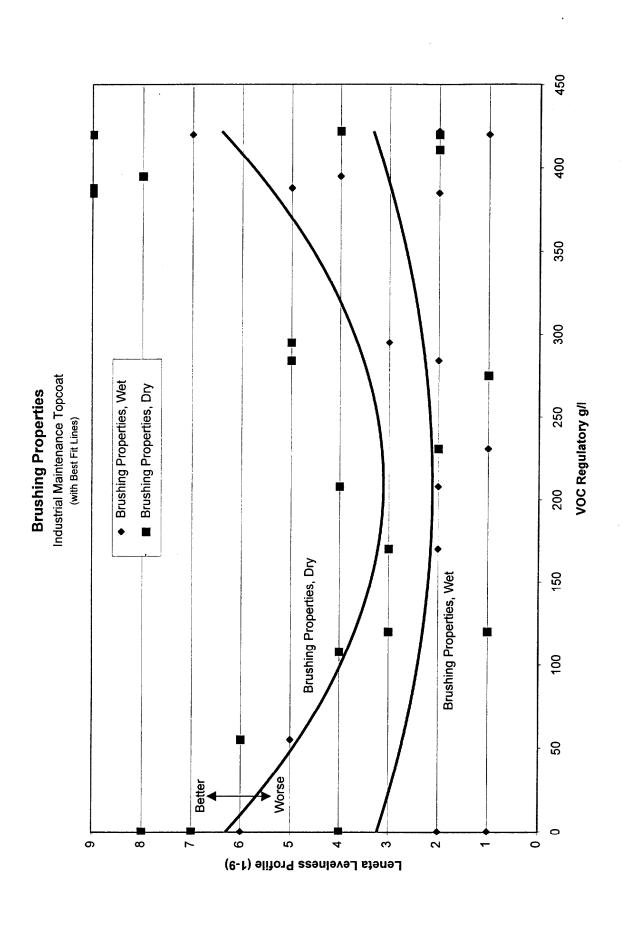
• Low VOC coatings exhibited lower performance compared to high VOC coatings.

Dry Film Thickness:

Low VOC coatings exhibited slightly higher dry film thicknesses compared to high VOC coatings.

Film Flexibility:

• Eighteen out of 21 coatings passed this test. The three coatings that failed had VOC contents of 0 g/l, 0 g/l, and 108 g/l.

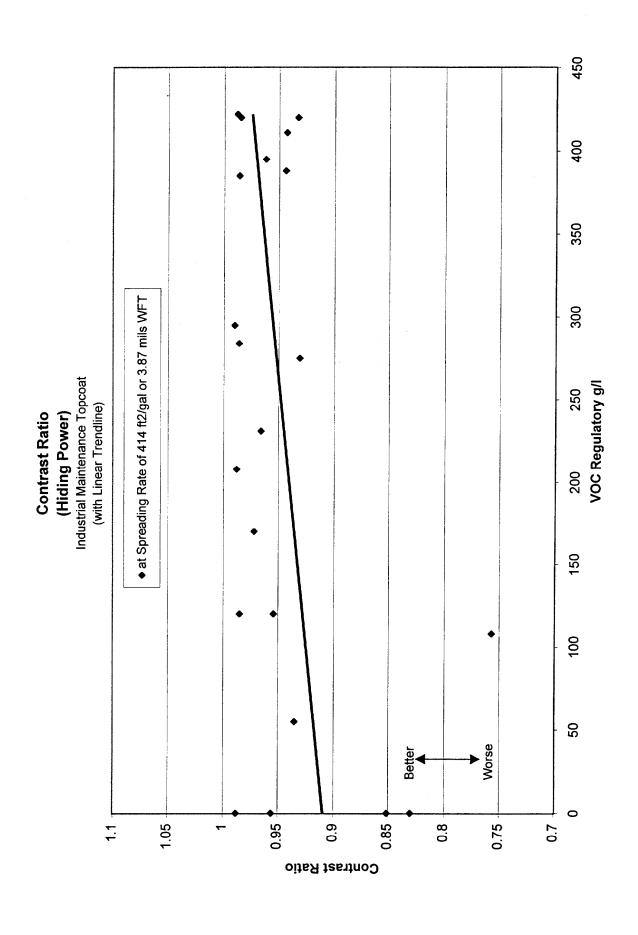

Comments:

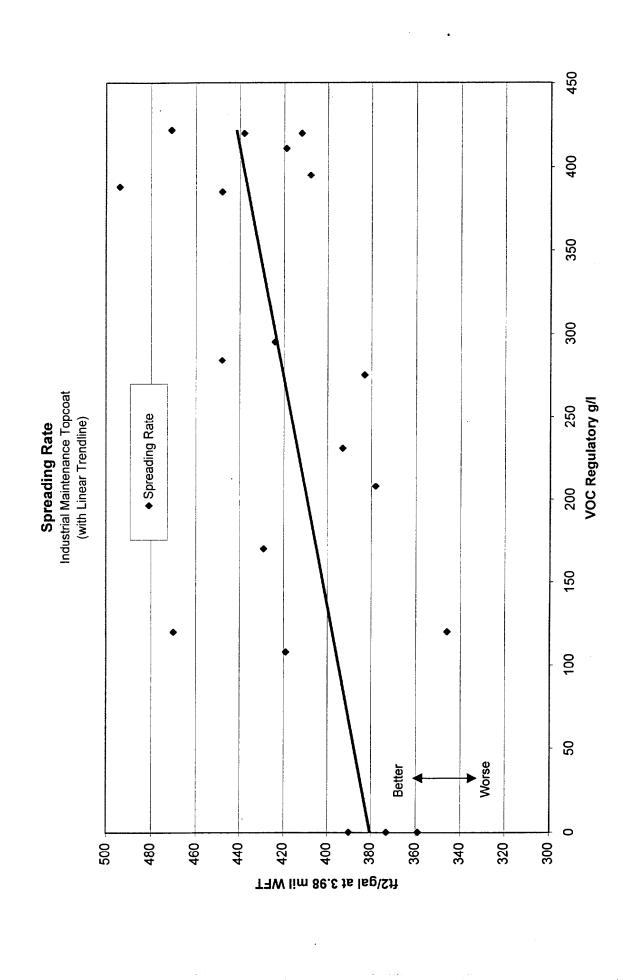
Overall, low VOC coatings exhibited similar performance compared to high VOC coatings.

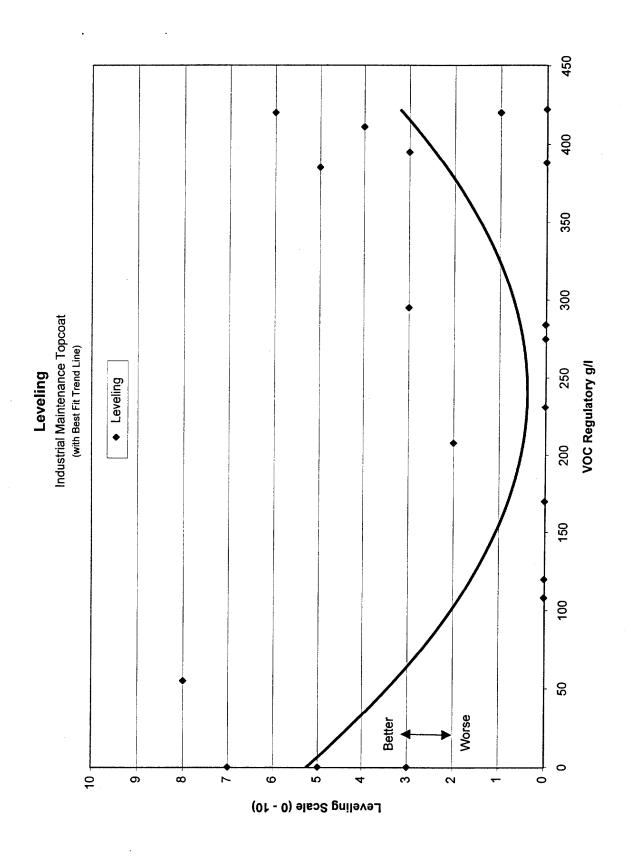
Industrial Maintenance Topcoat

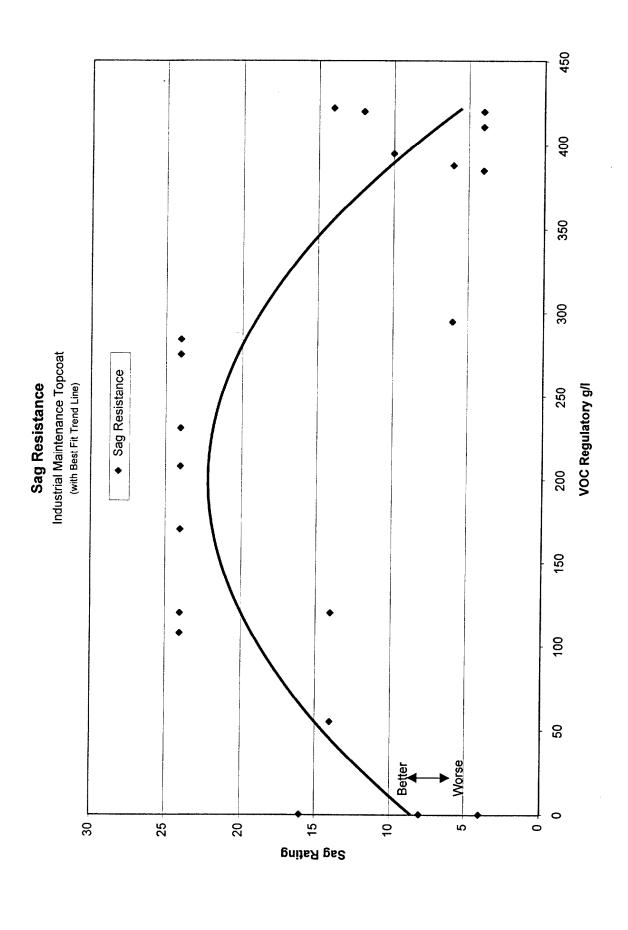
Coating Reference Designator	VOC, g/l	Part	Polymer Class	Intended Application	Total
901	108	2	Siloxirane	T	1
921	120	2	Siloxane	T	1
918	411	1	Urethane Alkyd	T	1
911	0	2	Urethane	Т	1
903	420	1	Silicone Alkyd	T	1
10	420	2	Urethane	Τ	1
915	0	2	Urethane	т т	1
916	0	2	Ероху	Т	1
919	170	2	Броху	P	1
931	385	1	Alkyd	T	1
932	284	2	Ероху	- T	1
934	388	2	Urethane	T	1
907	208	1	Acrylic	T	1
905	55	2	Urethane	T	1
909	120	1	Acrylic	T	1
913	0	2	Novolac	T	1
925	395	2	Ероху	T	1
928	275	2	Ероху	T	1
924	422	1	Alkyd	Τ	1
922	231	1	Acrylic	Т	1
929	295	2	Urethane	- T	1

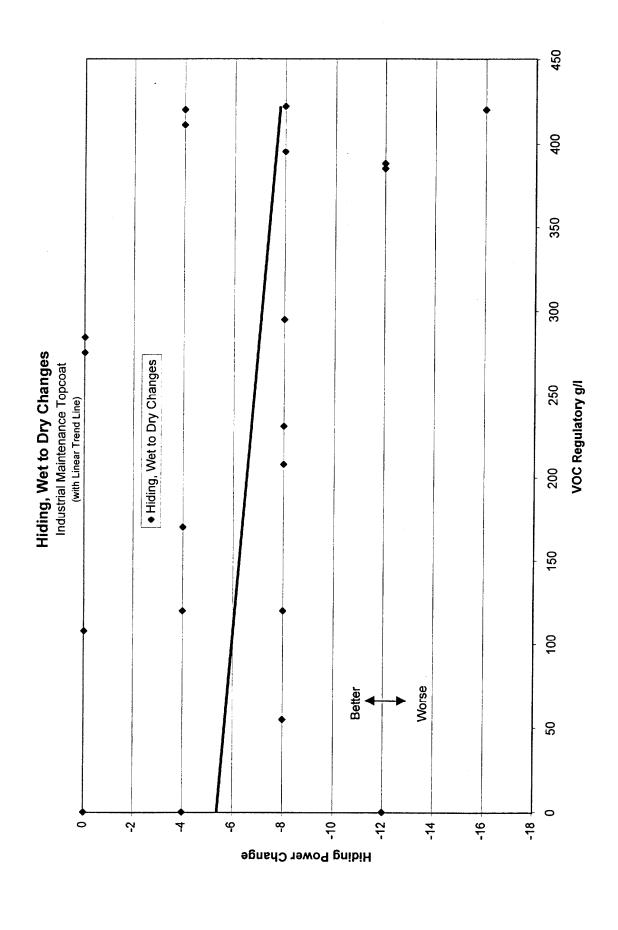
Single component coatings = 6 Multi-component coatings = 13

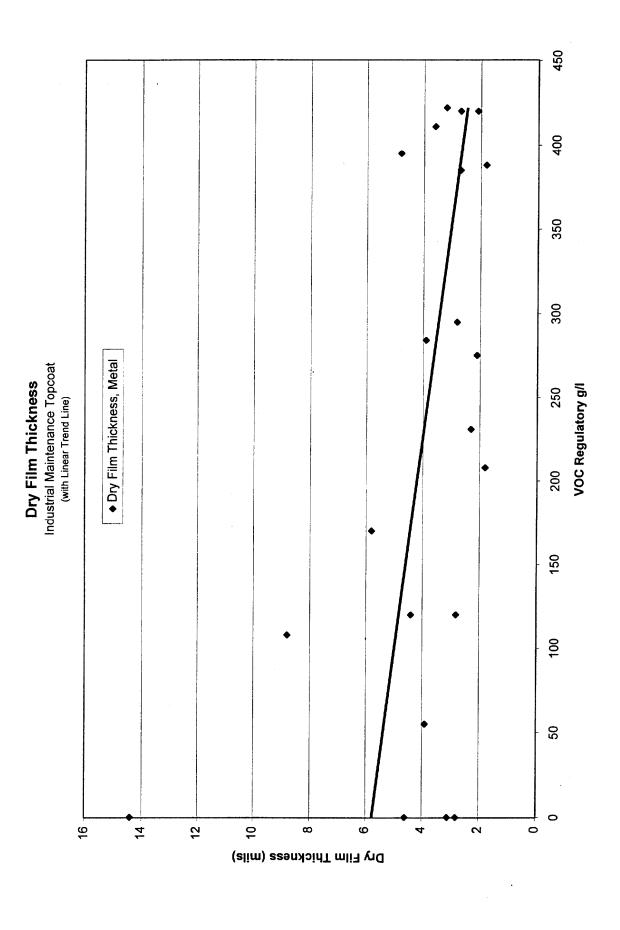



450 400 350 300 Industrial Maintenance Topcoat (with Linear Trend Lines) VOC Regulatory g/I 250 ◆ 50 degrees F, 90% RH (minutes) ■90 degrees F, 30% RH (minutes) 200 150 50 degrees F, 90% RH 9 90 degrees F, 30% RH 20 0 200.0 0.0 400.0 350.0 300.0 250.0 100.0 50.0 150.0 Minutes


Dry Time - Dry To Touch


450 400 350 300 ◆ 50 degrees F, 90% RH (minutes) ■90 degrees F, 30% RH (minutes) VOC Regulatory g/l 250 90 degrees F, 30% RH 200 50 degrees F, 90% RH 150 100 20 0 400.0 350.0 250.0 200.0 150.0 100.0 50.0 0.0 300.0 Minutes


Dry Time - Dry Hard
Industrial Maintenance Topcoat
(with Linear Trend Lines)



Taber Abrasion Resistance
Industrial Maintenance Topcoat
(with Linear Trend Line) VOC Regulatory g/I Ö Cycles to wear through coating

₹
•
age
₽.

				_																				
		₩W Rod #80	mile	9.0	65	7.5	12.5	8.5	8.2	7.5	7.5	6.5	5.6	8.0	7.5	9.6	10.5	7.5	885	8.5	98	88	75	8.5
:	Wet Film Thickness	WW Rod	mils	4.5	4.5	5.5	9.8	5.5	5.5	6.5	5.5	4.5	9.9	20	4.5	5.5	6.5	5.5	7.5	9.9	6.6	6.5	5.5	5.5
	W	₩₩ Rod #30	mils	4.5	3.5	4.5	4.5	3.6	9	4.5	5.5	4.5	5.5	\$ 7	4.5	3.5	\$\$	4.5	4.5	3.6	4.5	4.5	3.5	9.9
2.10	Hiding, W Chan			12	-		12		0			7					8	12	12		-	-	91	
2.7	Sag Res	istance	Notch Clearance in mils	•		92	-	=	>24	>24	=	×2×	*24	*24	24	24	•	4	9	10		3	12	=
2.4	Leve	ling	Scale, 0-10	E	s	s			۰	۰	•	۰	2	0		0	е	ç					-	
3.14	Spreadir	ng Rate		373	390	not possible	359	not possible	419	346	470	428	378	383	383	448	424	448	494	408	418	438	412	174
3.14	Contrast R Hiding I		at Spreading Rate of 414 ft2/gai or 3.87 mile WFT	0.956	9960	0.851	0.83	0.935	0.757	0.954	0.985	0.972	0.988	996.0	0.931	986.0	86.0	0.986	0.944	0.962	0.943	0.985	0.933	0.988
2.2	Dry time, D	ry Hard -	90 degrees F, 30% RH (minutes)	146.1	284.4	43.0	105.1	910	298.5	2.1	170.1	48.9	B.3	71.1	151.5	161.8	112.2	111.6	157	283.4	28.6	109.2	228.1	238.2
	One Part	Joanngs	50 degrees F, 90% RH (minutes)	193.6	346.8	35.4	361.8	360.0	363.2	22.5	360.3	206.5	1.72	360.0	358.5	328.9	350.2	1.71	149.5	358.9	237.1	120 3	215.7	590.9
2.2	Dry time,	Dry to	90 degrees F, 30% RH (minutes)	0.09	135.0	2.5	4.9	4.2	5.1	2.1	3.0	16.5	2.4	3.0	4.5	41.1	19.2	3.6	\$	27.9	4.0	3.0	5.5	2.2
2	Coati		50 degrees F, 90% RH (minutes)	33.4	204 8	3.0	3618	9.6	6.1	2.7	0.6	27.1	13.0	31.8	7.5	1.6	11.5	4.2	22	6.4	2.5	0.3	4.2	2.8
72	Brush Propertie		Leneta Leveiness Profile, 1 - 9	4	8	7	7	Đ	4	1	3	3	+	2	1	5	5	65	a	•	2	9	2	+
2.1	Brush Propertie		Leneta Levelnesa Profile, 1 - 9	2	2	9	1	5	7	٥	3	2	2	1	-	2	е	2	9	7	2	7	1	2
	Dens	sity	ibs/gai	11.83	12 50	9.77	8.98	10.57	12.59	9:50	1.8	12.82	9.89	12.01	13.34	11.48	11.02	10.47	10.80	12.50	11.87	11.10	9.83	10.12
	Coarse Pi	articles	Size in Microns	7	100	49	12	0	36	07	28	8	8	90	20	\$	2	8	81	09	36	0	•	28
	Nonvola Weig		*	79.2	95.5	1.79	40.2	19	85.2	47.7	91.4	89.2	‡	59.5	81.6	73.8	79.8	6.89	1.67	77.3	62.4	73.6	64.7	74.4
	Polymer	Class		Urethane	Novolac	Urethane	Ероху	Water-based polyester-urethane	Siloxirane	Acrylic	Siloxane	Ероху	Acrylic	Acrylic	Ероху	Ераху	Alkyd	Alkyd	Urethane	Ероху	Urethane Alkyd	Urethane	Silicone Alkyd	Alkyd
	VOC Co	ntent	g/l	0	0	0	0	88	108	120	120	170	208	231	275	284	295	385	388	395	411	420	420	422
Protocol Test Number	Coating Re Design			IMC11	IMC13	IMC15	IMC16	IMCS	IMC1	IMC9	IMC21	IMC19	IMC7	IMC22	IMC27	IMC31	IMC28	IMC30	IMC33	IMC25	IMC16	Ref	IMC3	IMC24
Protocol T.	Coating Re Numb		Units	118	913	915	916	902	106	606	921	919	208	822	928	932	858	931	934	925	918	10	608	824

SCAQMD NTS STUDY

3.9	Film Fi	exibility	pass/fail	fail	fail	pass	ssed	ssed	Į.	pass	pass	p451	5 Sad	pass	pass	pass	ssed	bess	ssed	ssed	ssed	pass	bass	pass
3.10		Dry Film Thickness, Metal		4.6	14.4	3.1	2.8	3.9	8.8	2.8	4.4	5.8	1.8	2.3	2.1	3.9	2.8	2.7	18	4.8	3.6	2.1	2.7	3.2
3.2	Appearance and Finish, Coted Panels			exotherm-rough, gloss	uniform, gloss	gelled particles, semigloss	smooth, glossy	grainy, glossy	grainy, glossy	uniform, semigloss	uniform, high gloss	uniform, satin	smooth, satin	uniform, flat w/rust spots	smooth, satin	smooth, satin	smooth, gloss	uniform, setin	smooth, high gloss	smooth, satin	smooth, glossy	smooth, glossy	smooth, high gloss	uniform, semigloss
3.2	Appears Finish, D Cha	rawdown		smooth, high gloss	grainy, semigloss	smooth, glossy	smooth, glossy	grainy, semigloss	grainy, semigloss	uniform, semigloss	smooth, high gloss	uniform, satin-flat	amooth, glossy	uniform, flat	smooth, satin	smooth, satin	smooth, high gloss	uniform, satin	smooth, high gloss	smooth, satin	smooth, high gloss	smooth, high gloss	smooth, high gloss	smooth, glossy
	Abrasion Resistance, Taber		Wear Index or Cycles to Expose Substrate	44.8	8.73	27.3	121.7	119	36.6	77.4	115.7	test not conducted	112.2/585 cycles	156.4	101.8	139.7	97.3	203.9/700 cycles	92.7	138.2	1,971	57.8	197.1/700 cycles	183.2
	upplicator Gap	WW Rod #60	mils	4.2	6.3	3.2	2.2	3.5	0.9	3.0	4.7	5.4	2.0	2.5	5.2	4.8	3.5	3.3	3.2	3.5	2.7	3.4	2.4	3.1
	Wet Film/Dry Film/WW & Bar Applicator Gap Relationships	WW Rod	mis	2.8	3.7	3.2	1.4	2.6	4.8	2.2	2.4	3.4	1.9	2.1	3.3	2.9	3.2	2.3	2.6	2.9	1.7	2.5	2.1	2.0
	Wet Film/Dry F	WW Rod #30	mils	2.1	2.7	2.3	1.1	1.6	3.4	1.9	2.2	3.3	1.8	1.5	3.4	1.9	2.2	1.4	2.4	2.4	1.6	1.2	11	1.7
Protocol Test Number	Goating R Desig			IMC11	IMC13	IMC15	IMC16	IMC5	IMC1	IMCB	1MC21	BMC19	IMC7	IMC22	IMC27	IMC31	IMC28	IMC30	IMC33	IMC25	IMC18	Ref	IMC3	IMC24
Protocol Te	Coating R Num		Units	110	913	915	916	902	901	606	921	919	907	922	628	832	626	158	934	828	818	10	903	924

Section 3: Industrial Maintenance System

•	1 st Coat	2 nd Coat	3 rd Coat
Total # manufactuers or brands	11	11	5
Single component coatings	9	7	1
Multi-component coatings	11	13	6
Total # coatings	20	20	7

Test Summary

Adhesion to Substrate:

• Low VOC coatings exhibited similar performance compared to high VOC coatings.

Corrosion Resistance - Blistering:

Low VOC coatings exhibited similar performance compared to high VOC coatings.

Corrosion Resistance - Filiform Corrosion:

Low VOC coatings exhibited marginally better performance compared to high VOC coatings.

Corrosion Resistance - Rust:

• Low VOC coatings exhibited similar performance compared to high VOC coatings.

Dry Film Thickness:

• Low VOC coatings exhibited higher film thickness compared to high VOC coatings.

Water Resistance (100 °F & 100% RH) - Scratch after two week exposure:

• Low VOC coatings exhibited similar performance compared to high VOC coatings.

Water Resistance (100 °F & 100% RH) - Gouge after two week exposure:

Low VOC coatings exhibited marginally better performance compared to high VOC coatings.

Water Resistance (100 °F & 100% RH) - Adhesion tape test after two week exposure:

• Low VOC coatings exhibited similar performance to high VOC coatings.

Industrial Chemical Resistance (7 day exposure) - Bleach:

Low VOC coatings exhibited marginally lower performance compared to high VOC coatings.

Industrial Chemical Resistance (7 day exposure) - MEK

Low VOC coatings exhibited similar performance compared to high VOC coatings.

Industrial Chemical Resistance (7 day exposure) - Acid

• Low VOC coatings exhibited marginally lower performance compared to high VOC coatings.

Water Resistance (Rust or Blisters after 1000 hr Immersion @ 100 °F):

• Low VOC coatings exhibited similar performance compared to high VOC coatings.

Mar Resistance (Load/Force to mar film in grams):

• Low VOC coatings exhibited better performance compared to high VOC coatings.

Comments:

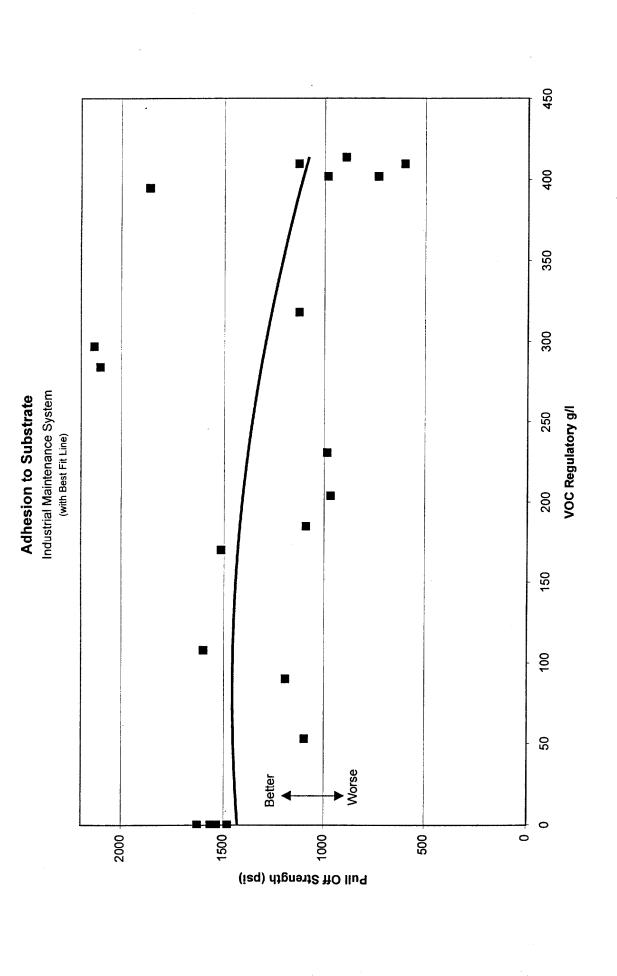
Overall, low VOC coatings exhibited similar performance compared to high VOC coatings, except one test. In the Mar Resistance test low VOC coatings exhibited better performance compared with their high VOC counterparts. More than half of the 47 coatings used by NTS for the industrial maintenance category were two-component coatings.

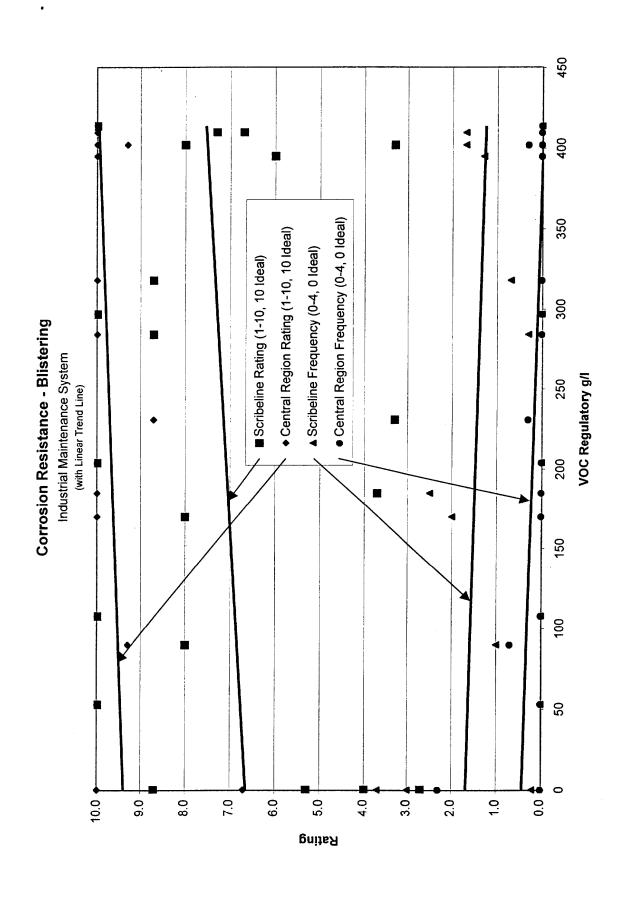
Industrial Maintenance System 1st Coat / Primer

Coating Reference Designator	VOC, g/l	Part	Polymer Class	Intended Application	Tota
901	108	2	Siloxirane	T	1
920	288	2	Ероху	Р	1 1
917	417	1	Alkyd	Р	1
910	0	2	Ероху	Р	1
902	400	1	Epoxy Ester	Р	2
914	0	2	Butadiene-Epoxy	P	2
919	170	2	Ероху	Р	1
933	282	2	Inorganic Zinc Silicate	Р	1
932	284	2	Ероху	Т	1
930	419	1	Akyd	Р	1
906	138	1	Acrylic	Р	1
904	49	1	Organic Zinc	P	1
908	60	1	Acrylic	Р	1
912	0	2	Novolac	P	1
925	395	2	Броху	T	1
923	382	1	Alkyd	P	1 1
922	231	1	Acrylic	T	_ _ 1
927	320	2	Броху	Р	1
Grand Total		1			20

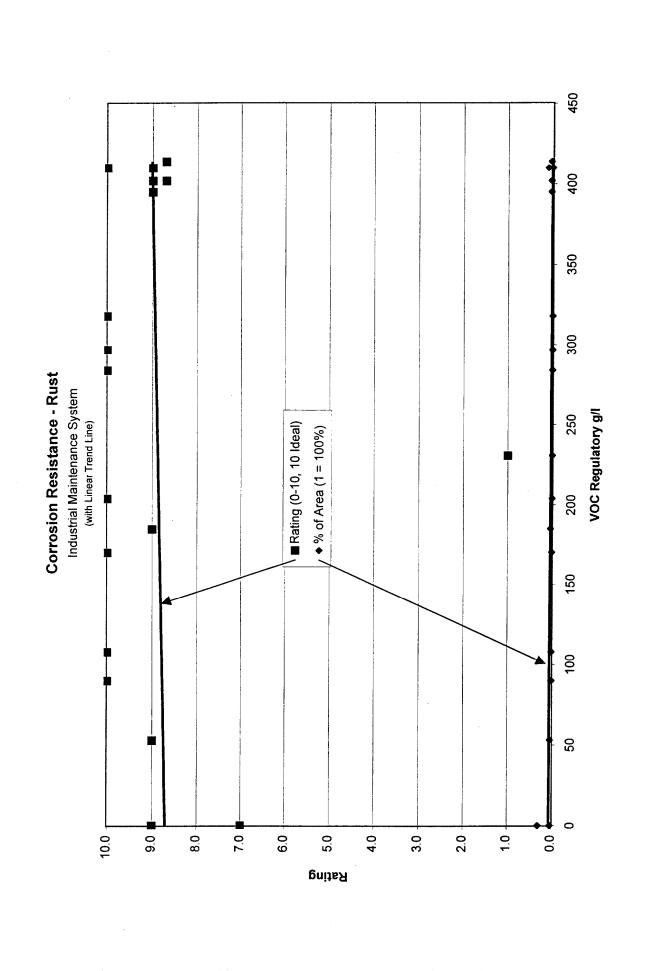
Single component coatings = 9 Multi-component coatings = 11

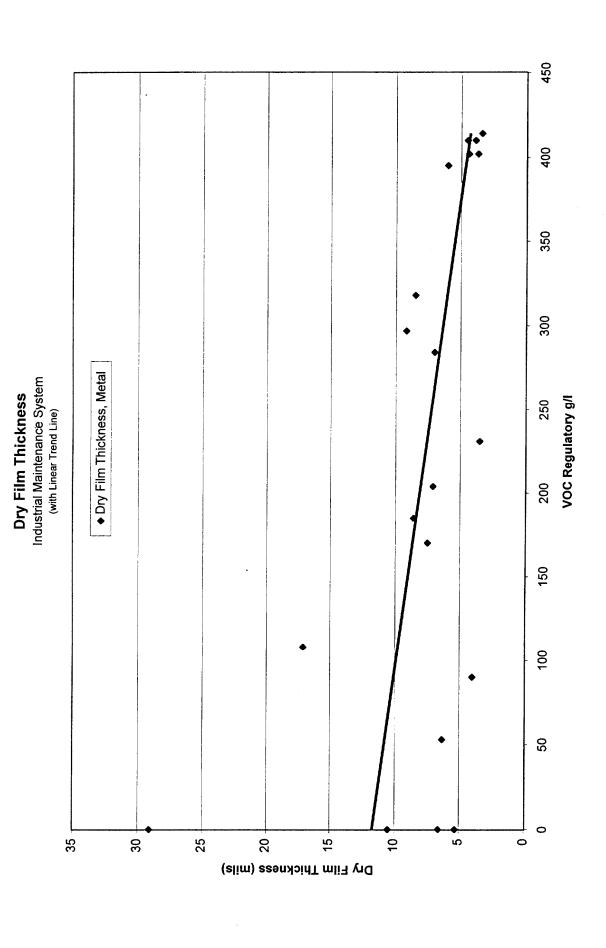
Industrial Maintenance System 2nd Coat / Mid Coat

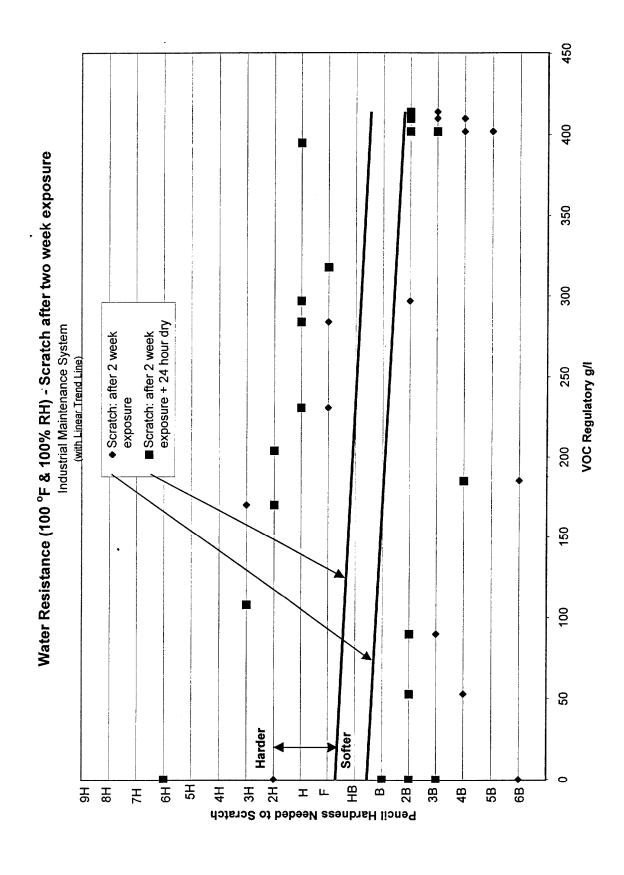

Designator VOC, g/l Part Polymer Class Application To 901 108 2 Siloxirane T 921 120 2 Siloxane T 918 411 1 Urethane T 911 0 2 Urethane T 903 420 1 Silicone Alkyd T 10 420 2 Urethane T 903 420 1 Silicone Alkyd T 10 420 2 Urethane T 915 0 2 Urethane T 916 0 2 Epoxy P 931 385 1 Alkyd T 932 284 2 Epoxy T 907 208 1 Acrylic T 909 120 1 Acrylic T 913 0 2 Novolac T	Coating					
901 108 2 Siloxirane T 921 120 2 Siloxane T 918 411 1 Urethane Alkyd T 911 0 2 Urethane T 903 420 1 Silicone Alkyd T 10 420 2 Urethane T 915 0 2 Urethane T 916 0 2 Epoxy T 919 170 2 Epoxy P 931 385 1 Alkyd T 932 284 2 Epoxy T 907 208 1 Acrylic T 909 120 1 Acrylic T 913 0 2 Novolac T 925 395 2 Epoxy T 928 275 2 Epoxy T 924 422 1 Alkyd T	Reference	1		1	intended	
921 120 2 Siloxane T 918 411 1 Urethane Alkyd T 911 0 2 Urethane T 903 420 1 Silicone Alkyd T 10 420 2 Urethane T 915 0 2 Urethane T 916 0 2 Epoxy T 919 170 2 Epoxy P 931 385 1 Alkyd T 932 284 2 Epoxy T 907 208 1 Acrylic T 909 120 1 Acrylic T 913 0 2 Novolac T 925 395 2 Epoxy T 928 275 2 Epoxy T 924 422 1 Alkyd T 922 231 1 Acrylic T	Designator	VOC, g/l	Part	Polymer Class	Application	Total
918	901	108	2	Siloxirane	T	1
911 0 2 Urethane T 903 420 1 Silicone Alkyd T 10 420 2 Urethane T 915 0 2 Urethane T 916 0 2 Epoxy T 919 170 2 Epoxy P 931 385 1 Alkyd T 932 284 2 Epoxy T 907 208 1 Acrylic T 909 120 1 Acrylic T 909 120 1 Acrylic T 913 0 2 Novolac T 925 395 2 Epoxy T 928 275 2 Epoxy T 924 422 1 Alkyd T	921	120	2	Siloxane	T	1
903	918	411	1	Urethane Alkyd	Т	1
10	911	0	2	Urethane	T	1
915 0 2 Urethane T 916 0 2 Epoxy T 919 170 2 Epoxy P 931 385 1 Akyd T 932 284 2 Epoxy T 907 208 1 Acrylic T 909 120 1 Acrylic T 913 0 2 Novolac T 925 395 2 Epoxy T 928 275 2 Epoxy T 924 422 1 Akyd T	903	420	1	Silicone Alkyd	T	1
916 0 2 Epoxy T 919 170 2 Epoxy P 931 385 1 Akyd T 932 284 2 Epoxy T 907 208 1 Acrylic T 905 55 2 Urethane T 909 120 1 Acrylic T 913 0 2 Novolac T 925 395 2 Epoxy T 928 275 2 Epoxy T 924 422 1 Akyd T	10	420	2	Urethane	Т	1
919 170 2 Epoxy P 931 385 1 Akyd T 932 284 2 Epoxy T 907 208 1 Acrylic T 909 120 1 Acrylic T 913 0 2 Novolac T 925 395 2 Epoxy T 928 275 2 Epoxy T 924 422 1 Akyd T	915	0	2	Urethane	T	1
931 385 1 Akyd T 932 284 2 Epoxy T 907 208 1 Acrylic T 905 55 2 Urethane T 909 120 1 Acrylic T 913 0 2 Novolac T 925 395 2 Epoxy T 928 275 2 Epoxy T 924 422 1 Akyd T 922 231 1 Acrylic T	916	0	2	Ероху	T	1
932 284 2 Epoxy T 907 208 1 Acrylic T 905 55 2 Urethane T 909 120 1 Acrylic T 913 0 2 Novolac T 925 395 2 Epoxy T 928 275 2 Epoxy T 924 422 1 Akyd T 922 231 1 Acrylic T	919	170	2	Ероху	P	1
907 208 1 Acrylic T 905 55 2 Urethane T 909 120 1 Acrylic T 913 0 2 Novolac T 925 395 2 Epoxy T 928 275 2 Epoxy T 924 422 1 Akyd T 922 231 1 Acrylic T	931	385	1	Alkyd	T T	1
907 208 1 Acrylic T 905 55 2 Urethane T 909 120 1 Acrylic T 913 0 2 Novolac T 925 395 2 Epoxy T 928 275 2 Epoxy T 924 422 1 Akyd T 922 231 1 Acrylic T	932	284	2	Ероху	т	2
909 120 1 Acrylic T 913 0 2 Novolac T 925 395 2 Epoxy T 928 275 2 Epoxy T 924 422 1 Akyd T 922 231 1 Acrylic T	907	208	1		T	1
913 0 2 Novolac T 925 395 2 Epoxy T 928 275 2 Epoxy T 924 422 1 Alkyd T 922 231 1 Acrylic T	905	55	2	Urethane	· T	1
925 395 2 Epoxy T 928 275 2 Epoxy T 924 422 1 Akyd T 922 231 1 Acrylic T	909	120	1	Acrylic	T	1
928 275 2 Epoxy T 924 422 1 Alkyd T 922 231 1 Acrylic T	913	0	2	Novolac	 -	1
924 422 1 Alkyd T 922 231 1 Acrylic T	925	395	2	Ероху	- T	1
922 231 1 Acrylic T	928	275	2	Ероху	- -	
	924	422	1		- 	1
	922	231	1	Acrylic	 	1
	Grand Total					20

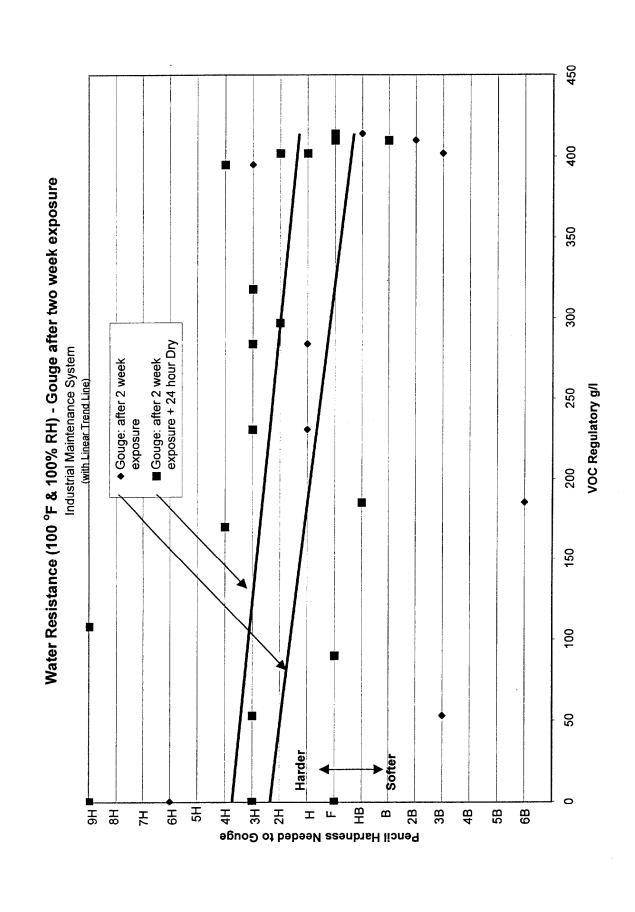

Single component coatings = 7 Multi-component coatings = 13

Industrial Maintenance System 3rd Coat / Topcoat

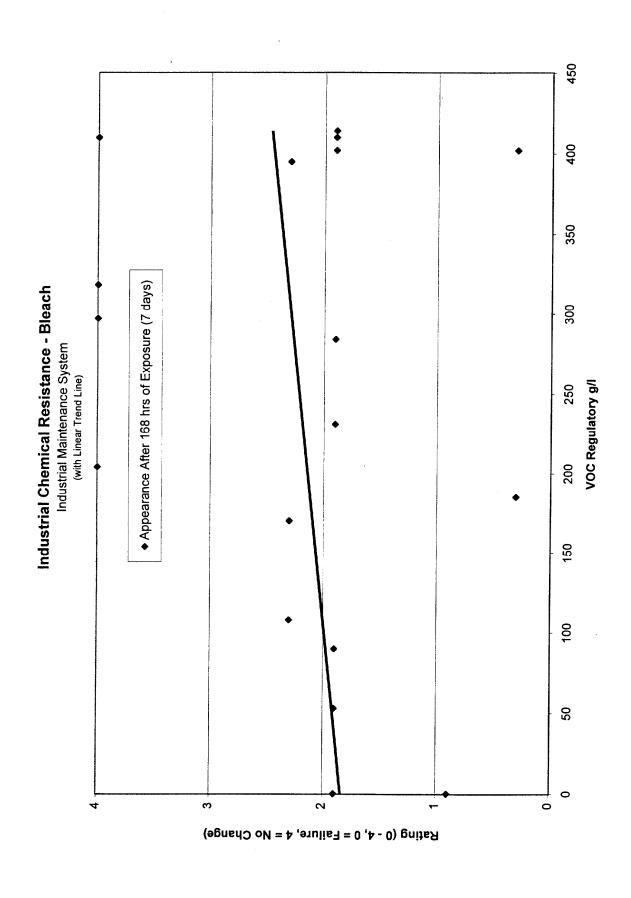

Coating Reference Designator	VOC, g/l	Part	Polymer Class	Intended Application	Tota
915	0	2	Urethane	Т	1
916	0	2	Ероху	Т	1
934	388	2	Urethane	T	1
907	208	1	Acrylic	T	1
905	55	2	Urethane	T	1
913	0	2	Novolac	T	1
929	295	2	Urethane	T	1
Grand Total					7

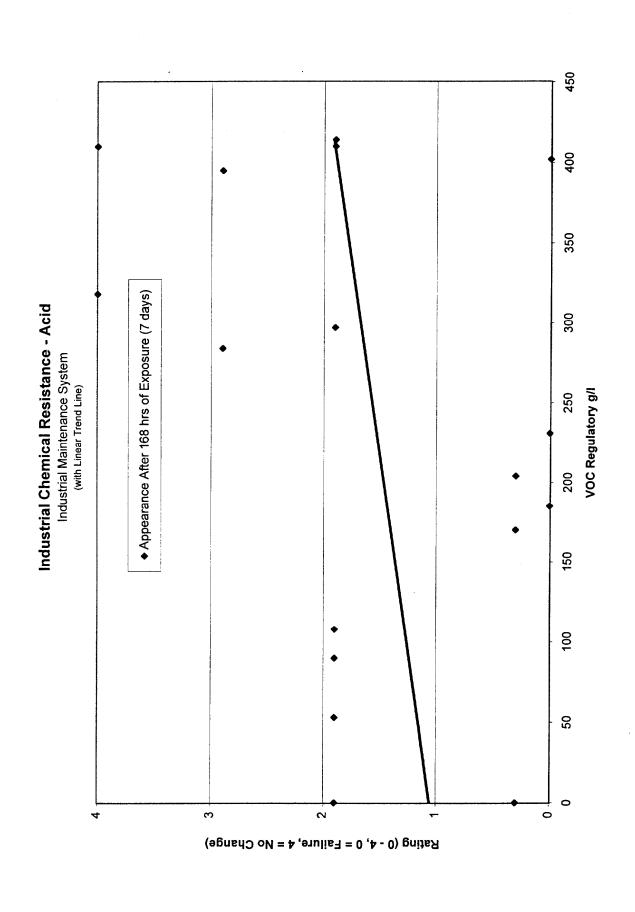

Single component coatings = 1 Multi-component coatings = 6

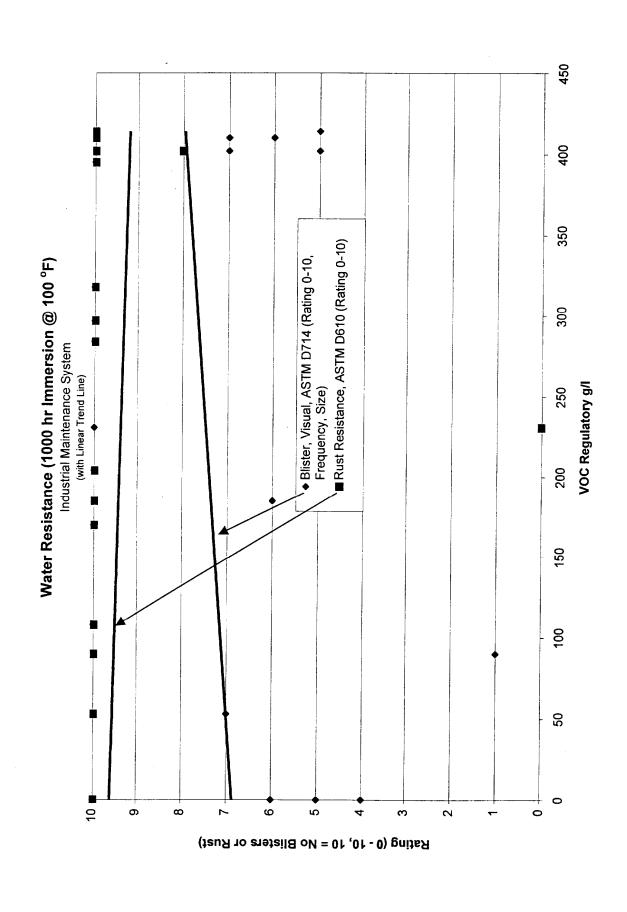


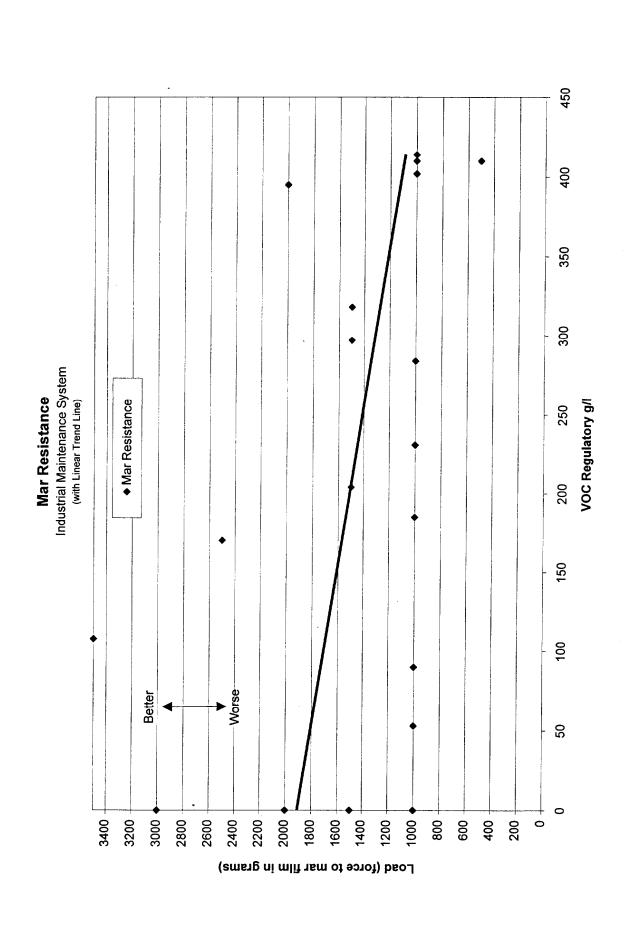


450 400 350 Corrosion Resistance - Filiform Corrosion 300 Industrial Maintenance System (with Linear Trend Line) ■At Scribeline Frequency (0-4, 0 Ideal) VOC Regulatory g/l 250 200 150 100 20 0.0 Rating 20 1.0








Water Resistance (100 °F & 100% RH) - Adhesion tape test after two week exposure ___Affer 2 week Exposure + 24 hour Dry (% removed) ◆ After 2 week Exposure (% removed) Industrial Maintenance System (with Linear Trend Line) VOC Regulatory g/I Percent Removed

450 400 350 ◆ Appearance After 168 hrs of Exposure (7 days) Industrial Chemical Resistance - MEK 300 Industrial Maintenance System (with Linear Trend Line) VOC Regulatory g/I 250 150 100 20 Ó Rating (0 - 4, 0 = Failure, 4 = No Change)

Protocol Test Number	dumber				3.1b	3.2			6	3.5		
System Re Design	System Re Numb	Polymer	VOC Co	Reference aver	Adhes Substrate	Appeara Finish, Pan		Corros	ion Resistance: Pro	Corrosion Resistance: Prohesion (2000 hr. exposurs)	osure)	
		Class	ontent			Coted	Blisterin	Blistering (evaluated IAW ASTM D714) Averaged Values	STM D714) Average	od Values	Filiform Corrosion Average	Filiform Corresion - IAW ASTM D2803 Averaged Values
Units			g/l		psi		Scribeline Rating (1-10, 10 Ideal)	Scribeline Frequency (0-4, 0 Ideal)	Central Region Rating (1-10, 10 Ideal)	Central Region Frequency (0-4, 0 Ideal)	At Scribeline Length	At Scribeline Frequency (0-4, 0 Ideal)
IMCS-06	910-911	Epoxy/Urethane	0/0	0	1564	rough, semigloss	2.7	3.7	10.0	0.0	120	3.0
IMCS-07	912-913-913	Novolac/Novolac	0/0/0	0	1535	uniform, satin	8.7	0.2	10.0	0.0	0.0	0.0
IMCS-08	914-915-915	Butadiene-epoxy/Urethane	0/0/0	0	1628	particles, satin	4.0	2.7	10.0	0:0	0.0	0.0
IMCS-09	914-916-916	Butadiene-epoxy/Epoxy	0/0/0	٥	1482	uniform, salin	5.3	3.0	6.7	2.3	0.0	0.0
IMCS-03	904-905-905	Epoxy-Polyamide, Zinc-rich/Water-based polyester- urethane	49/55/55	53	1099	glossy, particles	10.0	0.0	10.0	0.0	0.0	0.0
IMCS-05	908-909	Acrylic/Acrylic	60/120	8	1197	non-uniform, semiglass	8.0	1.0	9.3	0.7	0.0	0.0
IMCS-01	901-901	Siloxirane/Siloxirane	108/108	108	1600	glossy off-white	10.0	0.0	10.0	0.0	0.0	0.0
IMCS-11	919-919	Epoxy/Epoxy	170/170	170	1514	uniform, satin-flat	0.8	2.0	10.0	0.0	0.0	0.0
IMCS-04	906-907-907	Water-based polyester-urethane	138/208/208	185	1092	uniform, satin	3.7	2.5	10.0	0.0	22.0	3.7
IMCS-12	920-921	Epoxy/Sibxane	288/120	204	896	uniform, high-gloss	10.0	0.0	10.0	0.0	0.0	0.0
IMCS-13	922-922	Acrylic/Acrylic	231/231	231	986	eggshell, rust spots	3.3	3.3	8.7	0.3	0.0	0.0
IMCS-18	932-932	Ероху/Ероху	284/284	284	2105	uniform, satin	8.7	0.3	10.0	0.0	7.0	2.0
IMCS-16	927-928-929	Epoxy/Epoxy/Urethane	320/275/295	297	2136	uniform, satin-gloss	10.0	0.0	10.0	0.0	0.0	00
IMCS-19	933-932-934	inorganic Zinc Silicate/Epoxy/Urethane	282/284/388	318	1129	uniform, high gloss	8.7	7.0	10.0	0:0	0.0	0.0
IMCS-15	925-925	Epoxy/Epoxy	395/395	395	1861	uniform, satin-flat	6.0	1.3	10.0	0.0	5.7	1.0
IMCS-14	923-924	AlkydAlkyd	383/422	402	985	ridged, satin-gloss	8.0	1.7	. 9.3	0.3	0.5	0.2
IMCS-17	930-931	Alkyd/Alkyd	419/385	402	735	uniform, satin-flat	3.3	3.3	10.0	0.0	0.4	0.1
IMCS-20	902-10	Epoxy Ester/Urethane	400/420	410	603	uniform, high gloss	6.7	1.1	10.0	0.0	9.6	1.8
IMCS-02	902-903	Epoxy Ester/Silicone Alkyd	400/420	410	1131	uniform, semigloss	7.3	1.7	10.0	0.0	7.7	2.0
IMCS-10	917-918	Alkyd/Urethane Alkyd	417/411	414	895	uniform, glossy	10.0	0:0	10.0	0.0	11.8	1.7

105 20 degrees 85 degrees 20 degrees					3.6	3.10				3.8		
NAVASTAM Delica ASTAM Diess, Diess, Diess, Diess, Diess, Diess, Diess, Codegness ASTAM Diess, Codegness				Undercutting,	Dirt Resis				Environment	tal Resistance		
% olymet (1) Rating 0 · 10 3 20 degrees 60 degrees 55 degrees 20 degrees 60 degrees<		Rust Resistance Average	- IAW ASTM D610 - ed Values	ASTM D1654	tance: Dry		Delta Gloss, Prete	st-2 weeks (+ = Dec	rease, - = increase)		it-2 weeks + 24 hour	rs (+ # Decrease, -
003 400 105 044 62 -129 1 -12 003 1000 221 137 609 431 132 503 003 570 530 530 482 482 483 581 496 003 530 66 15 04 26 53 64 66 67 66 67 495 67 496 67 <t< th=""><th></th><th>Rating (0-10, 10 Ideal)</th><th></th><th>Rating 0 - 10</th><th></th><th>mils</th><th>20 degraes</th><th>60 degrees</th><th>85 degrees</th><th>20 degrees</th><th>eaußep 09</th><th>85 degrees</th></t<>		Rating (0-10, 10 Ideal)		Rating 0 - 10		mils	20 degraes	60 degrees	85 degrees	20 degrees	eaußep 09	85 degrees
003 1000 530 581 137 509 451 132 503 003 570 53 287 482 443 231 468 003 380 66 15 287 28 63 07 468 003 900 610 4 4.5 68 2 57 233 35 07 00 60 610 4 4.5 68 2.3 6.1 61 7		0.6		4.00		10.5	-0.4	-6.2	-12.9	-	-12	7.0
033 570 53 287 482 433 2891 486 030 380 66 15 -04 28 05 07 003 810 63 15 -04 28 57 535 07 000 810 4 45 68 23 53 147 000 95 171 20 23 59 61 147 000 950 171 20 23 59 61 61 000 950 171 20 23 68 11 117 000 950 13 20 12 23 61 11 113 000 950 130 88 10 98 14 14 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 <t< td=""><td></td><td>0:6</td><td></td><td>10.00</td><td></td><td>29.1</td><td>13.7</td><td>50.9</td><td>43.1</td><td>13.2</td><td>50.3</td><td>40.9</td></t<>		0:6		10.00		29.1	13.7	50.9	43.1	13.2	50.3	40.9
030 380 66 15 -04 28 05 07 000 810 80 63 189 2 67 05 07 000 810 4 45 68 2 53 147 35 00 95 171 20 23 59 61 61 61 61 000 530 86 88 10 96 11 61 157 13 157 13 158 13 13 158 13 13 158 13 158 11 96 11 151 158 13 14 14 14 14 14		0.6		5.70		5.3	28.7	48.2	43.3	29.1	49.8	46.5
000 610 610 63 163 7 57 225 35 000 610 610 4 45 66 -35 -83 147 00 95 10 17.1 20 23 59 6.1 61 61 000 600 530 75 -0.2 -1.7 -37 -0.3 -26 000 600 70 71 82 -28 -0.3 43 -1.3 000 600 70 71 12.2 46 76 1.3 1.3 000 700 70 71 12.2 46 76 1.3 1.3 000 700 92 -2.3 -0.5 -6.3 -0.1 0.6 <t< td=""><td></td><td>7.0</td><td></td><td>3.80</td><td></td><td>9:9</td><td>1.5</td><td>-0.4</td><td>2.8</td><td>0.5</td><td>0.7</td><td>-0.2</td></t<>		7.0		3.80		9:9	1.5	-0.4	2.8	0.5	0.7	-0.2
000 810 4 45 68 .35 .83 147 0 95 17.1 20 2.3 5.9 6.1 6.1 6.1 000 530 430 75 -0.2 -1.7 -3.7 -0.3 2.6 7.6 000 950. 71 9.2 -2.8 -0.3 4.3 -1.3 7.6 000 950. 7.1 9.2 -2.8 -0.3 4.3 -1.3 -1.3 000 6.70 7.1 1.2 4.8 7.1 1.3 -1.3		9.0	0.03	9.00		6.3	18.9	2	5.7	23.5	3.5	5.8
0 95 17.1 20 2.3 5.9 6.1 7.2 7.1 7.2 7.2 7.2 7.3 7.4 7.4 7.4 7.4 7.4	,	10.0		8.10		4	4.5	8.8	-3.5	-8.3	14.7	8.7
0.00 5.30 75 -0.2 -1.7 -3.7 -0.3 -2.6 0.00 9.50 4.30 86 88 10 -9.6 11 15.7 >-0.5 1.30 7 7.1 82 -2.8 -0.3 4.3 -1.3 0.00 6.70 7 7.1 12.2 4.6 7.6 13.3 0.00 7.20 82 -2.3 -0.5 6.3 -0.1 0.6 0.00 7.20 85 -4.8 1.4 -4.4 -4.7 -1.3 0.03 5.80 85 1.8 7.2 2.9 1.3 0.03 5.80 86 1 1.4 -4.4 -4.7 -1.3 0.03 5.80 86 1 1.8 1.4 2.2 2.2 0.00 4.80 4.4 3.3 5.1 -4.4 2.7 0.1 0.10 8.10 8.0 9.1 1.4 <td< td=""><td></td><td>10.0</td><td>0</td><td>9.5</td><td></td><td>17.1</td><td>20</td><td>2.3</td><td>5.9</td><td>6.1</td><td>6.1</td><td>9.0-</td></td<>		10.0	0	9.5		17.1	20	2.3	5.9	6.1	6.1	9.0-
003 430 86 88 10 -96 11 157 000 950. 71 92 -28 -03 43 -1.3 >05 1.30 35 08 0.9 0.8 -0.1 0.2 0.00 6.70 7 7.1 12.2 46 76 133 0.00 7.20 92 -2.3 -0.5 -6.3 0.6 0.6 0.00 7.20 85 -4.8 -1.4 -4.7 -1.3 1.3 0.03 3.80 6 1 1.8 1 1.4 2.9 0.03 5.80 4.80 4.4 3.3 5.1 6.8 5.9 15.1 0.00 4.80 4.80 4.5 10.1 -0.2 -4.4 2.7 0.1 0.00 4.80 4.80 3.1 2.5 -4.3 5.9 5.9 5.9 0.10 5.50 5.50 3.4		10.0	00:00	5.30		7.5	-0.2	-1.7	-3.7	-0.3	-2.6	-3.6
0.00 9.50 7.1 9.2 -2.8 -0.3 4.3 -1.3 0.00 6.70 3.5 0.8 0.9 0.8 -0.1 0.2 0.00 6.70 7 7.1 12.2 4.6 7.6 13.3 0.00 7.20 92 -2.3 -0.5 -6.3 -0.5 0.6 0.00 7.20 85 -4.8 -1.4 -4.4 -4.7 -1.3 0.03 5.80 6 1 1.8 1 1.4 2.9 15.1 0.03 5.80 4.4 3.3 5.1 -6.8 5.9 15.1 0.00 4.60 4.60 4.4 3.3 5.1 -6.8 5.9 5.9 0.10 5.50 5.50 3.4 3.7 11.4 1.5 7.4 0.03 5.50 5.50 3.4 3.7 11.4 5.9 5.9 5.9 0.03 5.50 5.50		0.6	0.03	4.30		8.6	8.8	10	-9.6	=	15.7	1.1-
>0.05 1.30 35 0.8 0.9 0.09 0.01 0.01 0.00 0.00 7 7.1 7.1 12.2 4.6 7.9 13.3 13.3 0.00 7.20 92 -2.3 -0.5 -6.3 -0.5 0.6 13.3 0.00 7.20 85 -4.8 -1.4 -4.7 -1.3 -1.3 0.03 5.60 6 1 18.5 8.8 7.2 23.6 15.1 0.00 4.80 44 3.3 5.1 -6.8 5.9 15.1 0.10 8.10 4.5 10.1 -0.2 -4.4 2.7 0.1 0.10 8.10 4.5 10.1 -0.2 -4.4 2.7 0.1 0.10 8.10 8.5 10.1 -0.2 -4.4 2.7 0.1 0.00 9.00 4.80 3.9 3.1 2.5 4.3 5.9 5.9 0.10 8.1		10.0	00:0	9.50		7.1	9.2	-2.8	-0.3	4.3	-1.3	-0.7
0.00 6.70 6.70 7 7.1 112.2 4.6 7.6 15.3 0.00 7.00 9.2 -2.3 -0.5 4.3 -0.5 0.6		1.0	>0.5	1.30		3.5	8.0	6.0	8.0	-0.1	0.2	-
0.00 7.00 9.2 -2.3 -0.5 -6.3 -0.5 0.0 0.0 0.00 720 85 -4.8 -1.4 -4.4 -4.7 -1.3 0.03 3.80 6 1 1.8 1 1.4 2.9 0.03 5.80 37 16.5 8.8 7.2 236 15.1 0.00 4.80 4.4 3.3 5.1 6.8 5.9 12.2 0.10 8.10 4.5 10.1 -0.2 -4.4 2.7 0.1 0.03 5.50 5.50 3.4 37.4 11.4 15.6 5.9 5.9		10.0	0.00	6.70		7	7.1	12.2	4.8	7.8	13.3	5.6
0.00 7.20 85 48 ·1.4 -4.4 -4.7 -1.3 0.03 3.80 6 1 1.8 1 1.4 2.9 0.03 5.80 37 18.5 8.8 7.2 23.6 15.1 0.00 4.80 4.4 3.3 5.1 6.8 5.9 12.2 0.10 8.10 4.5 10.1 -0.2 -4.4 2.7 0.1 0.03 5.50 5.50 3.4 37.4 11.4 15.6 5.9 5.9		10.0	0.00	7.00		9.2	-2.3	-0.5	-6.3	-0.5	9.0	-5.6
003 380 6 1 1.8 1 1.4 2.9 003 5.80 37 18.5 8.8 72 236 15.1 003 3.90 4.4 3.3 5.1 -6.8 5.9 12.2 0.00 4.60 4.5 10.1 -0.2 -4.4 2.7 0.1 0.10 8.10 3.9 3.1 2.5 -4.3 5.9 5.9 0.03 5.50 3.4 37.4 11.4 15.6 24.2 7.4		10.0	0:00	7.20		85	4.8	1.4	4.4	4.7	-1.3	1.1.
003 580 37 185 88 72 236 151 003 3.90 44 3.3 5.1 6.8 59 12.2 0.00 4.60 4.5 10.1 -0.2 -44 2.7 0.1 0.10 8.10 3.9 3.1 2.5 -4.3 5.9 5.9 0.03 5.50 3.4 37.4 11.4 15.6 24.2 7.4		8:0	0.03	3.80		9	-	1.8	-	4.1	2.9	2.3
0.03 3.90 44 3.3 5.1 6.8 5.9 12.2 0.00 4.80 4.80 4.5 10.1 -0.2 -4.4 2.7 0.1 0.10 8.10 3.9 3.1 2.5 -4.3 5.9 5.9 0.03 5.50 3.4 37.4 11.4 15.6 24.2 7.4		9:0	0.03	5.80		3.7	18.5	8.8	7.2	23.6	15.1	10.6
0.00 4.60 4.5 10.1 -0.2 -4.4 2.7 0.1 0.10 8.10 3.9 3.1 2.5 -4.3 5.9 5.9 0.03 5.50 3.4 37.4 11.4 15.6 24.2 7.4		8.7	0.03	3.90		4.4	3.3	5.1	8.9	6.9	12.2	1.5
0.10 8.10 3.9 3.1 2.5 -4.3 5.9 5.9 0.03 5.50 3.4 37.4 11.4 15.6 24.2 7.4		10.0	0.00	4.80		4.5	10.1	-0.2	4.4	2.7	0.1	-8.2
0.03 5.50 3.4 37.4 11.4 15.6 24.2 7.4		0.6	01.0	8.10		3.9	3.1	2.5	4.3	6.5	5.8	10.4
		8.7	0.03	5.50		3.4	37.4	11.4	15.6	24.2	12	2

Protocol Test Number	lumber						3.8				
System Re Design	System R Numl										
	eference bers	Reflectance Delta	Ita CIE (+ = Decrease, -	ı	Deita E313 Yellow (+ = Decrease, - = Increase)		Hard	Hardness		Adhesio	Adhesion, Tape
Units		pretest-2 week	pretest-2 week+ 24 hour dry	pretest-2 week	pretest-2 week+ 24 hour dry	Scratch: after 2 week exposure	Scratch: after 2 week exposure + 24 hour dry	Gouge: after 2 week exposure	Gouge: after 2 week exposure + 24 hour Dry	After 2 week Exposure (% removed)	After 2 week Exposure + 24 hour Dry (% removed)
IMCS-06	910-911	4.81	5.89	-1.30	-1.35	8	a	L		28, 35%	58,0%
IMCS-07	912-913-913	1.97	2.17	-0.91	96.0-	24	£	æ	-E	5B, 0%	5B, 0%
IMCS-08	914-915-915	2.14	3.63	-0.65	-0.86	89	38	H9>	품	38, 5-15%	58,0%
IMCS-09	914-916-916	4.20	5.09	-0.63	-3.43	8	28	L	u_	58,0%	58,0%
IMCS-03	904-905-905	0.04	0.49	-0.04	20:0	£	28	38	동	1B, 50% of topcoat	48, <5%
IMCS-05	908-908	-1.30	0.58	-0.08	01.0	38	28	ш	L	4B, <5%	58,0%
IMCS-01	901-901	3.17	3.47	-1.03	96:0-	ж	돐	Н6	₩.	5B, 0%	5B, 0%
IMCS-11	919-919	-1.85	-1.14	76:0	0.92	¥.	2H	#	ŧ	5B, 0%	5B, 0%
IMCS-04	906-907-907	1.81	-0.51	0.52	-0.43	89	8	89	멸	0B, 80% of topcoat	48, <5%
IMCS-12	920-921	5.27	2.91	-1.54	-0.94	꿁	24	Н9	#8	58.0%	58,0%
IMCS-13	922-922	-10.62	09:6:	-28.37	-28.49	ı	Ι	I	¥	4B, <5%	4B, <5%
IMCS-18	932-932	3.52	4.22	-1.03	96:0	ı	I	I	Æ	48, <5%	58, 0%
IMCS-16	927-928-929	-0.25	-0.26	0.04	0.17	28	I	2н	24	58,0%	5B, 0%
IMCS-19	933-932-934	-0.10	-0.11	-0.04	0.02	F	u.	Æ	돐	5B, 0%	58,0%
IMCS-15	925-925	3.40	3.95	-1.31	-1.43	I	н	胀	ŧ	58,0%	5B, 0%
IMCS-14	923-924	10.19	7.96	-2.97	-2.00	58	38	38	I	38, 10%	3B, 10%
IMCS-17	930-931	2.22	1.32	-0.67	-0.12	48	28	38	75	38, 15%	38, 15%
IMCS-20	902-10	2.23	1.77	-0.35	-0.23	38	28	Ŀ	L	5B, 0%	58,0%
IMCS-02	902-903	-1.21	-3.04	0.24	1.16	48	28	28	8	28, 35%	48, <5%
IMCS-10	917-918	19.34	15.68	-5.49	-4.29	38	28	쁖	14	08, 100%	58,0%

Above values converted to numeric value only (6B≖1, ...9H≖17)

	3.4		
	Industrial Chemical Resistance		
Bleach Bleach	Methyl Ethyl Ketone (MEK)		-
Appearance After 168 hrs of Exposure (7 Rating per Tname Api	Appearance Affer 168 hrs of Exposure (7 Rating per Tremc Appearance Affer 168 hrs of Exposure (7 days)	ture (7 Rating per Tnemc Method 59	Visual
elightly softened and slightly dulled 2S,3VS	softened and slightly dulled 2X,3VS Softened, evolen, delanicated (adhesive delan of prime)	of primer) 2S,3VS	as follows
softened and slightly dulled 3X,2S Soften	Softward, swollen, delaminated (achesive delam of primer) 2VS,3S,2S softened and dulled	3X,2S	no visual change
ened, swollen, delaminated (adhesive delam of pri	softened and dulled 1X,0X softened, slightly whitened, bistered, medium-dense #8	1-dense #6 3VS,2S,1X	darkened
softened and dulled 2S,3VS soften	softened, slightly whitened, bistered, medium-dense #6 1X,0X Softmad, svolien, delaminated (cohesive delam of lopcost)	of topocat) 2S,3VS,1X	whitened
Dull, slightly raised 2S,3VS	Slightly softened 25,05 raised, blistered, dense #4	2S,3VS	as follows
raised, blistered, dense #4 2S,3S	slightly softened and slightly dulled 2X,0X softened and slightly dulled	28	as follows
Severally Yellowed 3X	slightly dulled 3VS Dull, slightly raised	35,25	no visual change
ned, swollen, detaminated (cohesive delam of top 3X	dulled, softened and slightly raised 2S,3X softened, slightly whitened	2S,1X	no visual change
Slightly softened 25,35,1X	raised; bistered, dense #4 2S,0X slightly softened and slightly dulled	3VS,2S,0VS	as follows
dulled, softened and slightly raised	soffended, slightly whitened	nd topcool only 25,1X	no visual change
softened, slightly whitened 35,25	2X,1X shield topeased topeased and coheans belond layout any	ă	covered with rust
slightly raised and slightly dulled 35,25	severally yellowed and slightly softened 3S,2S alightly missed, increased duly appearance and softened	softened 3VS	no visual change
slightly raised and dulled	severely raised, softened, duiled 3VS,2X slightly raised and slightly dulled	d 28,3VS	no visual change
severely yellowed and slightly softened 4	alightly raised, increased duled appearance and achieved 2S discolored medium pinkfolue, moderately raised	ly raised	no visual change
slightly softened	slightly raised and dulled 2S severely raised, softened , dulled	g/s	no visual change
2S,3VS,1X	slightly softened 2X,1X,0X slightly raised and dulled	2S,0X	slightly darkened
severely raised, soffened , dulled 25,3VS		aned 2S,1X,0X	yallowed, with some rust spots around bissen
ntly raised, increased dulled appearance and softe 4 disc	severely yellowed and slightly duiled 2S,1X,0X	1 # F	as follows
sightly dulled	2S,1X,0X		yellowed
Rened, slightly whitened, blistered, medium-dense 2S Sohened, swollen, desanwaled (coheseve delan of topocas)	2S,1X,0X 2S,0X 2S,0X 2S,1X	2S,3VS	

Industrial Maintenance Coating System (IMCS) Data Table

_											.,		,										
3.25c	Resis Accel	hering stance, erated, door																					
3.25b	Resis	hering tance , or, Steel																					
3.24b	Mar Re:	sistançe	Load in grams	2000	3000	1500	1000	1000	1000	3500	2500	1000	1500	1000	1000	1500	1500	2000	1000	1000	1000	200	1000
	ince		Rust Resistance, ASTM D610 (Rating 0-10)	10-no rusting or less than 0.01% of surface rusted	10-no rusting or less than 0.01% of surface rusted	10-no rusting or less than 0.01% of surface rusted	10-no rusting or less than 0.01% of surface rusted	10-no rusting or less than 0.01% of surface rusted	10-no rusting or less than 0.01% of surface rusted	10-no rusting or less than 0.01% of surface rusted	10-no rusting or less than 0.01% of surface rusted	10-no rusting or less than 0.01% of surface rusted	10-no rusting or less than 0.01% of surface rusted	0-approximately 100% of surface rusted	10-no rusting or less than 0.01% of surface rusted	10-no rusting or less than 0.01% of surface rusted	10-no rusting or less than 0.01% of surface rusted	10-no rusting or less than 0.01% of surface rusted	10-no rusting or less than 0.01% of surface rusted	6-less than 0.1% of surface rusted	10-no rusting or less than 0.01% of surface rusted	10-no rusting or less than 0.01% of surface rusted	10-no rusting or less than 0.01% of surface rusted
3.23	Water Resistance	Blister, Visual, ASTM 0714	(Rating 0-10, Frequency, Size)	5, medium-dense, #4	10, None	4, medium-dense, #2	6, medium-dense, #6	7, few, #4	1, dense, #2	10, None	10, None	5, medium, #4	10, none	10, None	10, None	10, None	10, None	10, None	5, medium-dense, #4 or #6	7, few, #4 or #2	7, dense, #8	6, medium, #4	5, medium-dense, #4
lumber	System Re Numb			910-911	912-913-913	914-915-915	914-916-916	904-905-905	908-909	901-901	919-919	906-907-907	920-921	922-922	932-932	927-928-929	933-932-934	825-825	923-924	930-931	902-10	902-903	917-918
Protocol Test Number	System Re Design		Units	IMCS-06	IMCS-07	IMCS-08	IMCS-09	IMCS-03	IMCS-05	IMCS-01	IMCS-11	IMCS-04	IMCS-12	IMCS-13	IMCS-18	IMCS-16	IMCS-19	IMCS-15	IMCS-14	IMCS-17	IMCS-20	IMCS-02	IMCS-10

Section 4: Nonflat Primer, Quick Dry Primer, and Primer Sealer Undercoater - Interior

Total # manufactuers or brands	12
Single component coatings	10
Multi-component coatings	1
Total # coatings	17

Note: Six coatings part status (single or multi-component) not available.

Test Summary

Brushing Properties Wet:

• Low VOC coatings exhibited slightly lower performance compared to high VOC coatings. One high VOC coating exhibited excellent performance.

Brushing Properties Dry:

• Low VOC coatings exhibited slightly lower performance compared to high VOC coatings. One high VOC coating exhibited excellent performance.

Dry Time - Dry To Touch:

• Low VOC coatings exhibited similar dry times at 50 °F and 90% RH, but exhibited slightly lower dry times at 90 °F and 30% RH compared to high VOC coatings.

Dry Time - Dry Hard:

• Low VOC coatings exhibited similar performance compared to high VOC coatings

Contrast Ratio (Hiding Power):

• Low VOC coatings exhibited similar performance compared to high VOC coatings.

Spreading Rate:

• Low VOC coatings exhibited lower performance compared to high VOC coatings.

Leveling:

• Low VOC coatings exhibited similar performance compared to high VOC coatings.

Sag Resistance:

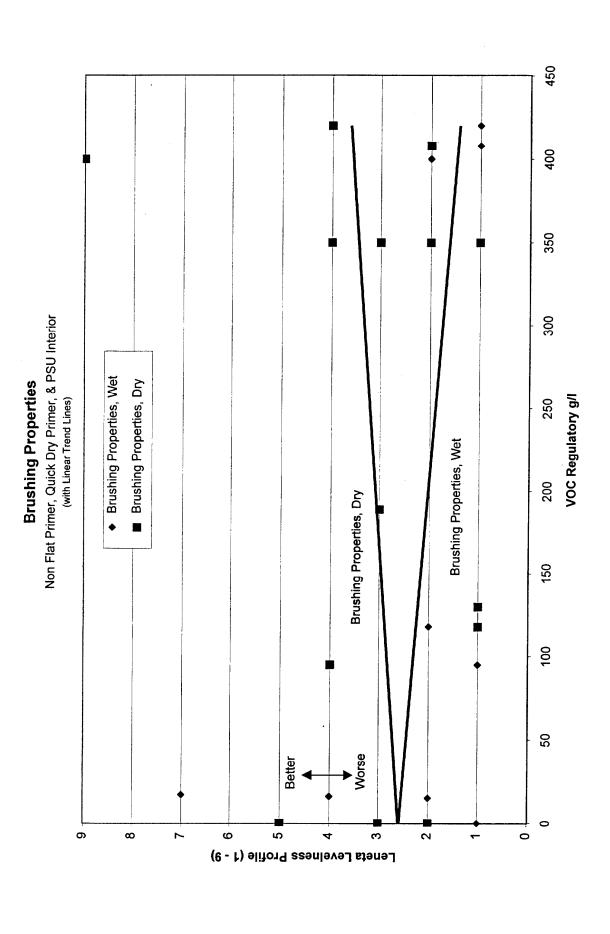
• Low VOC coatings exhibited slightly higher performance compared to high VOC coatings.

Hiding Wet to Dry Changes:

• Low VOC coatings exhibited similar performance compared to high VOC coatings.

Dry Film Thickness:

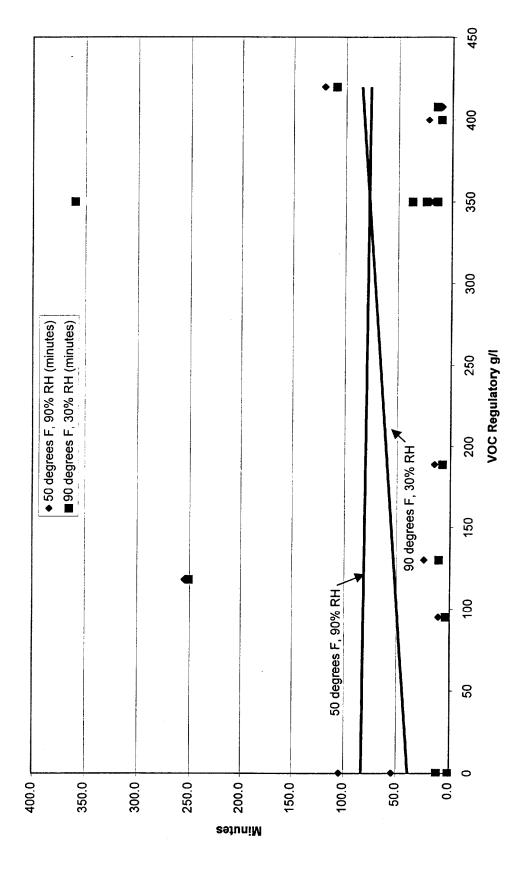
Low VOC coatings exhibited slightly lower dry film thicknesses compared to high VOC coatings.

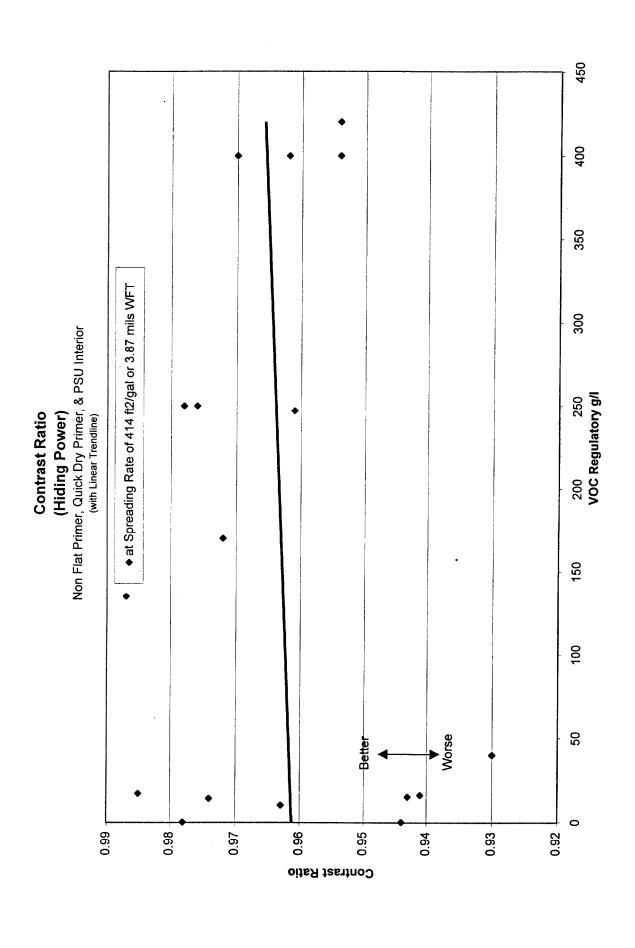

Comments:

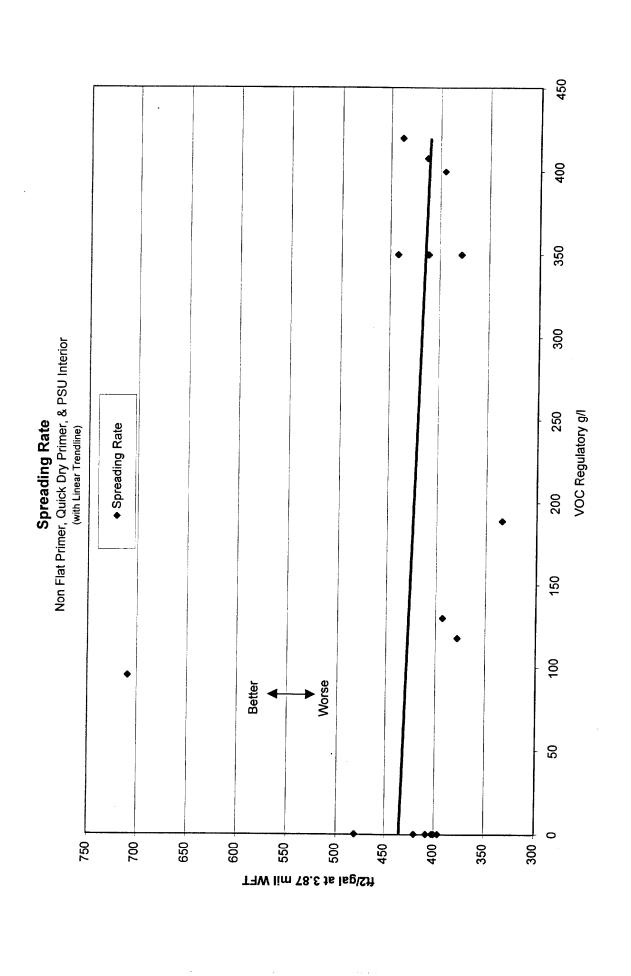
Overall, low VOC coatings exhibited similar performance to high VOC coatings.

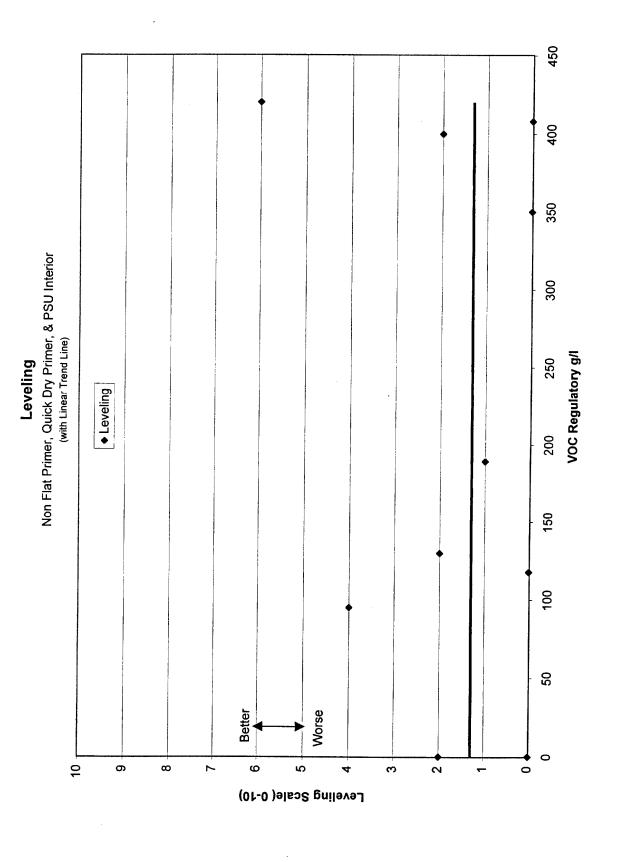
Nonflat Primer, Quickdry Primer, and Primer Sealer Undercoater - Interior

					
Coating		1	1		
Reference					
Designator	VOC, g/l	Part	Polymer Class	Intended Application	Total
333	189	(blank)	(blank)	Р	1
327	0	1	Acrylic latex	P	1
103	408	1	Alkyd	Р	1
320	350	1	Alkyd	Р	1
10	420	2	Urethane	Т	1
321	130	1	Acrylic latex	P	1
329	0	(blank)	(blank)	Р	1
330	350	(blank)	(blank)	P	1
334	0	(blank)	Acrylic latex	Р	1
326	0	(blank)	(blank)	Р	1
313	118	1	Acrylic emulsion	s	1
111	400	1	Alkyd	P	1
315	0	1	Acrylic emulsion	P	1
303	0	1	(blank)	S	1
324	350	1	Alkyd	Р	1
323	35	(blank)	(blank)	U	1
308	95	1	(blank)	S	1
Grand Total					17

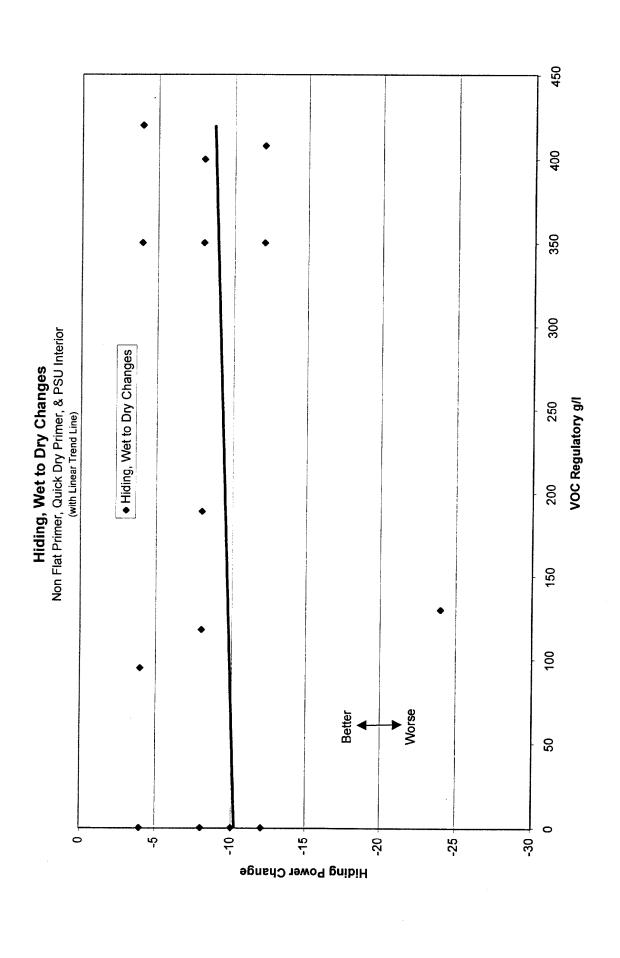

Single component coatings = 10 Multi-component coatings = 1

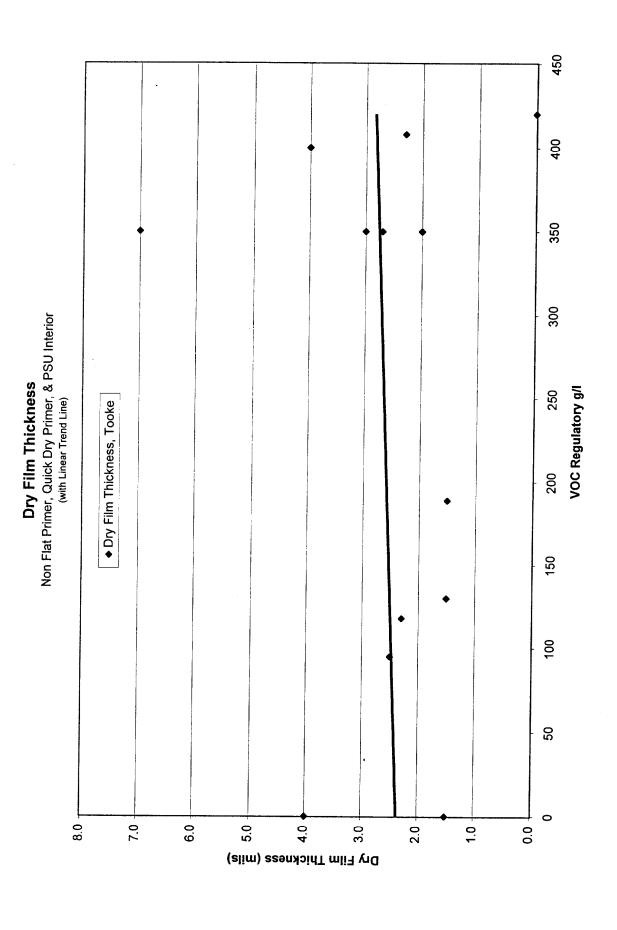



450 400 350 300 Non Flat Primer, Quick Dry Primer, & PSU Interior **Dry Time - Dry To Touch** ◆ 50 degrees F, 90% RH (minutes) ■ 90 degrees F, 30% RH (minutes) 90 degrees F, 30% RH VOC Regulatory g/I 250 (with Linear Trend Lines) 200 150 50 degrees F, 90% RH 100 20 2.0 0.0 12.0 10.0 0.9 4.0 20.0 18.0 16.0 14.0 8.0 Minutes


Dry Time - Dry Hard

Non Flat Primer, Quick Dry Primer, & PSU Interior
(with Linear Trend Lines)





Non Flat Primer, Quick Dry Primer, & PSU Interior (with Linear Trend Line) Sag Resistance VOC Regulatory Sag Resistance Better 'n Sag Rating

									· · · · ·	,			,	_		, 			
3.14	Spreading Rate	ft2/gal at 3.87 mil WFT	402	400	408	396	420	481	709	378	393	334	412	442	378	411	395	413	438
3.14	Contrast Ratio (Cw) Hiding Power	at Spreading Rate of 414 ft2/gal or 3.87 mils WFT	0.944	0.978	0.963	0.93	0.987	0.972	0.961	0.978	0.976	0.954	0.97	0.962	0.954	0.974	0.943	0.941	0.985
2.2	Dry time, Dry Hard	90 degrees F, 30% RH (minutes)	3.4	7.8	11.8	3.9	1.0	11.8	3.7	250.9	10.2	7.2	23.7	13.2	360.0	36.9	9.7	13.8	109.2
7	- One Part Coatings	50 degrees F, 90% RH (minutes)	16.5	7.5	17.8	5.8	54.1	104.2	10.2	255.1	24.0	14.6	17.1	19.8	359.2	20.7	21.7	9.0	120.3
2.2	Dry time, Dry to	90 degrees F, 30% RH (minutes)	1.9	2.4	1.0	0.3	1.0	2.2	1.3	1.3	2.1	2.7	1.5	3.0	3.6	3.6	9.1	4.2	0.3
8	Coatings	50 degrees F, 90% RH (minutes)	6.6	2.7	1.3	1.6	17.8	1.0	1.2	1.6	2.1	7.8	2.1	2.1	1.9	2.7	13.0	8.4	3.0
2.1	Brushing Properties, Dry	Leneta Levelness Profile, 1 - 9	2	က	က	2	4	8	S	1	3	4	င	3	۶	2	3	9	6
2.1	Brushing Properties, Wet	Leneta Levelness Profile, 1 - 9	-	2	-	1	2	₽	9	1	2	2	2	2	۲	1	2	4	7
	Density	lbs/gal	10.79	10.01	11.32	11.67	10.7	11.18	10.95	11.3	12.08	10.55	12.11	11.67	11.58	12.5	10.34	11.2	11.1
	Coarse Particles	Size in Microns	40	48	9	100	36	100	40	20	36	28	44	40	100	33	40	28	none
	Nonvolatile by Weight	%	48.1	39.1	56.8	57.6	43.5	56.1	50.7	52.8	59.8	39.6	74.9	76.5	71.2	75.2	64.5	66.1	73.6
,	Polymer Class	•	Acrylic Latex	Acrylic Latex	Acrylic Latex	Acrylic Latex	Vinyl Polymer Latex	Acrylic	Acrylic Latex	Acrylic Emulsion	Acrylic Latex	Acrylic Latex	Alkyd	Alkyd	Alkyd	Alkyd	Alkyd	Alkyd	Urethane
	VOC Content	g/l	0	0	٥	0	0	0	95	118	130	189	350	350	350	350	400	408	420
	Coating Reference Designator		NFP10	NFP11	NFP13	NFP18	PSU1	NFP3	PSU2	PSU3	NFP5	NFP17	NFP4	NFP7	NFP8	NFP14	QDP4	QDP2	REF
Protocol Test Number	Coating Reference Number	Units	326	327	329	334	303	315	308	313	321	333	320	323	324	330	11	103	10

Nonflat Primer (NFP), Quick Dry Primer (QDP), and Primer Sealer Undercoater (PSU) INTERIOR Data Table

3.10		ry Film less, Took		2.0	2.0	2.5	5.0	1.5	4.0	2.5	2.3	1.5	1.5	3.0	7.0	2.0	27	4.0	2.3	N/A
3.2	Appearance and Finish, Coated Wood Panels			uniform flat	uniform, flat	uniform, flat	uniform, eggshell	uniform, flat	uniform, flat	uniform. flat	smooth, satin-flat	uniform, egashell	even. flat/thin	uniform, flat-matte	uniform, flat	smooth satin-flat	uniform. flat	egoshell	uniform, eggshell	N/A
3.2	Finish,	arance and Drawdowi Charts		uniform, flat	smooth, flat	smooth, flat	smooth, flat	smooth, flat	semi-rough, flat matte	slightly crinkled, flat	even, satin-flat	smooth, flat	smooth, flat	smooth matte	smooth, flat	smooth, eggshell	ettem dtooms	smooth, matte	smooth, eggsheli	smooth, high gloss
	ar Applicator ps	WW Ro	d mils	3.3	2.1	2.6	2.8	2.1	3.1	2.5	2.5	2.3	2.4	3.8	3.4	4.2	3.4	3.0	2.3	3.4
	Wet Film/Dry Film/WW & Bar Applicator Gap Relationships	WW Ros #48	d mils	2.3	1.5	2.1	2.4	2.1	2.4	1.9	2.7	2.2	1.9	2.3	3.3	2.4	2.1	2.3	2.2	2.5
	Wet Film/Dry G	WW Roc #30	i mils	1.4	1.3	1.6	2.0	1.4	1.7	1.6	1.5	2.0	1.6	1.2	2.4	2.0	1.9	2.4	2.6	1.2
	**	WW Roo #80	mils	10.5	9.0	7.5	8.5	7.5	7.5	7.5	9.5	7.5	7.5	8.5	8.5	10.5	7.5	8.5	8.5	8.5
	Wet Film Thickness	WW Rod #48	mils	6.5	5.5	5.5	5.0	4.5	7.5	5.5	7.5	5.5	6.5	5.5	5.5	7.5	6.5	6.5	5.5	6.5
	, w	WW Rod #30	mils	5.5	4.5	4.5	4.5	4.5	4.5	5.5	5.5	4.5	5.5	3.5	4.5	3.5	5.5	5.5	4.5	4.5
2.10	Hiding, Wet to Dry Changes		Wet-Dry Hiding Change (WDHC) Factor	-12	89	-12	-12	4-	-10	4	8-	-24	æρ	-12	8-	4	-12	e-8	c-12	4
2.7	Sag Resistance		Notch Clearance in mils	16	>24	>24	10	16	>24	12	>24	14	10	14	12	4	8	>24	8	4
2.4	Leveling		Scale, 0-10	2	1	۰	-	2	0	4	0	2	-	٥	0	0	•	2	0	9
	Coating Reference Designator			NFP10	NFP11	NFP13	NFP18	PSU1	NFP3	PSU2	PSU3	NFP5	NFP17	NFP4	NFP7	NFP8	NFP14	QDP4	QDP2	REF
Protocol Test Number	Coating Reference Number		Units	326	327	329	334	303	315	308	313	321	333	320	323	324	330	Ξ	103	10

Section 5: Nonflat Primer, Quick Dry Primer, and Primer Sealer Undercoater - Exterior

Total # manufactuers or brands	11
Single component coatings	9
Multi-component coatings	1
Total # coatings	14

Note: Four coatings part status (single or multi-component) not available.

Test Summary

Brushing Properties Wet:

• Low VOC coatings exhibited slightly lower performance compared to high VOC coatings. One high VOC coatings exhibited excellent performance.

Brushing Properties Dry:

• Low VOC coatings exhibited slightly lower performance compared to high VOC coatings. One high VOC coatings exhibited excellent performance.

Dry Time - Dry To Touch:

• Low VOC coatings exhibited similar performance compared to high VOC coatings.

Dry Time - Dry Hard:

Low VOC coatings exhibited faster dry times at 50 °F and 90% RH, and at 90 °F and 30% RH compared to high VOC coatings.

Contrast Ratio (Hiding Power):

• Low VOC coatings exhibited similar performance compared to high VOC coatings.

Spreading Rate:

• Low VOC coatings exhibited similar performance compared to high VOC coatings.

Leveling:

• Low VOC coatings exhibited slightly lower performance compared to high VOC coatings.

Sag Resistance:

• Low VOC coatings exhibited similar performance compared to high VOC coatings.

Hiding Wet to Dry Changes:

• Low VOC coatings exhibited slightly better performance compared to high VOC coatings.

Dry Film Thickness:

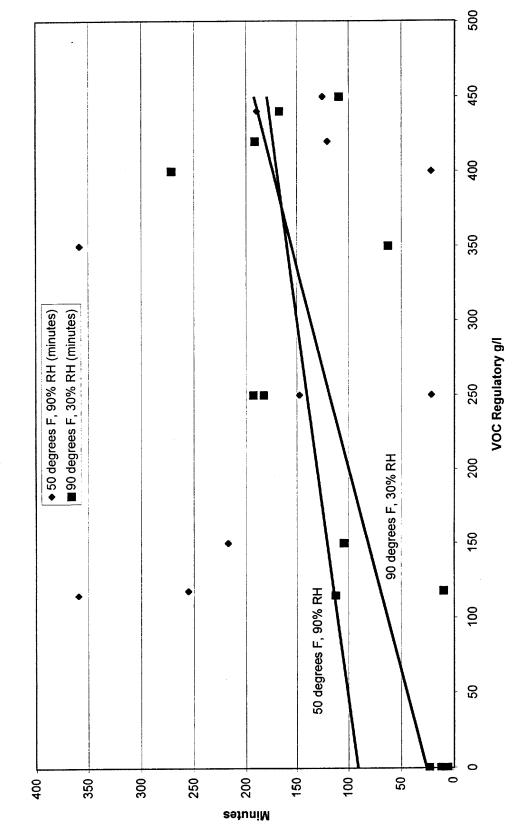
• Low VOC coatings exhibited similar dry film thicknesses compared to high VOC coatings.

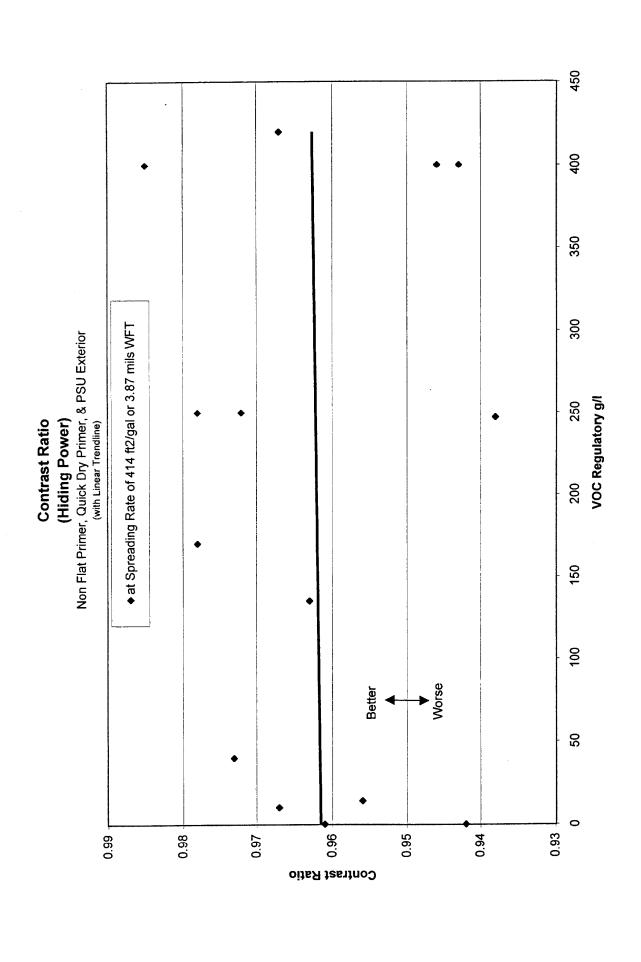
Comments:

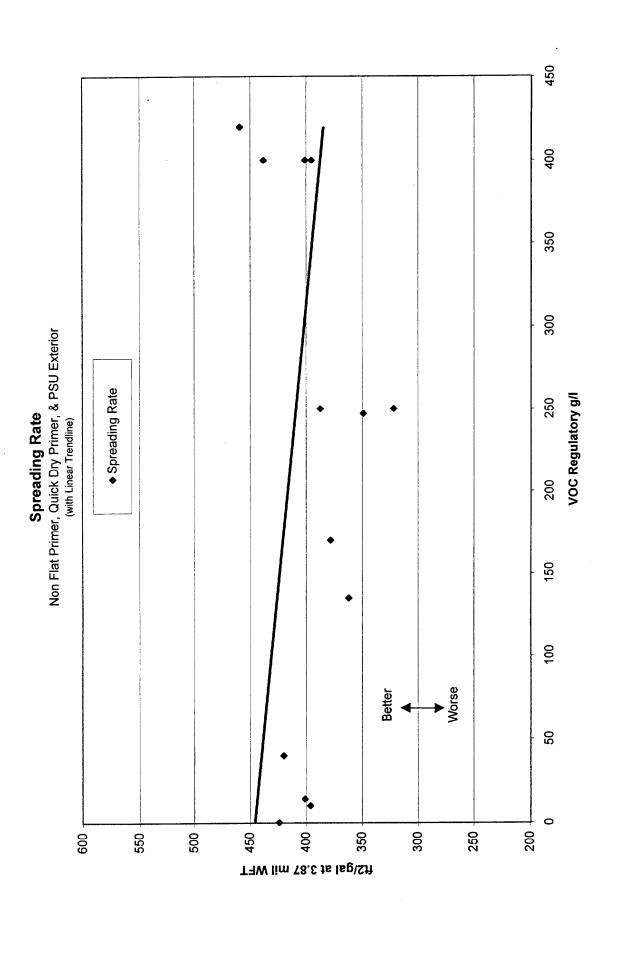
Overall, low VOC coatings exhibited similar performance to high VOC coatings.

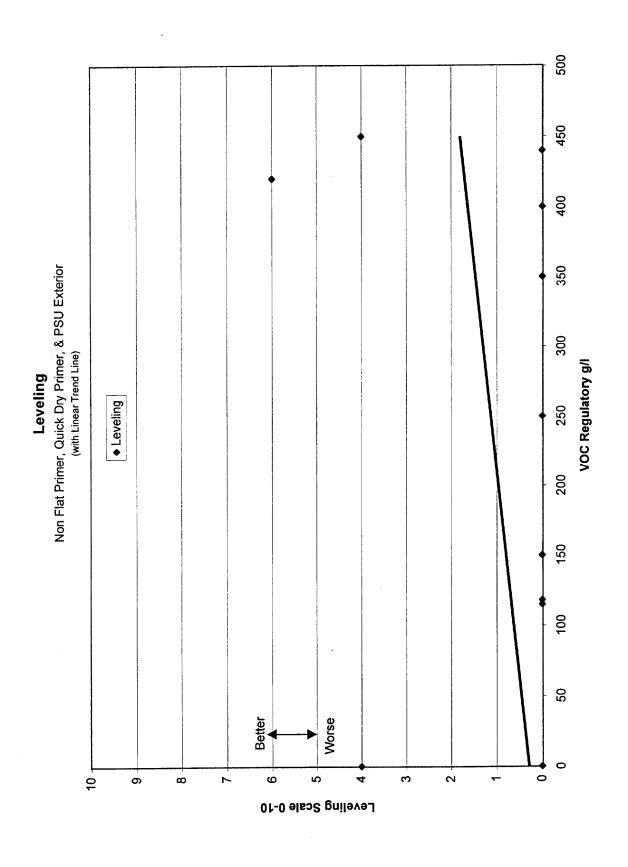
Nonflat Primer, Quickdry Primer, and Primer Sealer Undercoater - Exterior

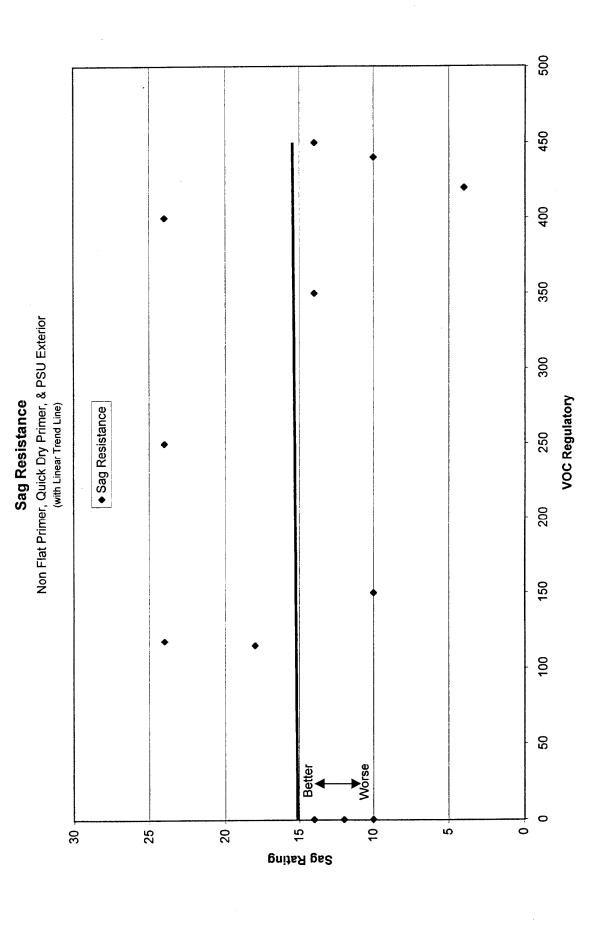
					igsquare
Coating					
Reference					
Designator	VOC, g/l	Part	Polymer Class	Intended Application	Total
328	350	1	Alkyd	P	1
322	115	1	Acrylic latex	Р	1
101	440	1	Alkyd	P	1
10	420	2	Urethane	T	1
331	250	(blank)	(blank)	P	1
301	1	1	Copolymer Latex	P	1
325	0	(blank)	(blank)	P	1
313	118	1	Acrylic emulsion	S	1
111	400	1	Alkyd	Р	1
332	250	(blank)	(blank)	P	1
319	150	(blank)	(blank)	P	1
308	95	1	(blank)	S	1
109	450	1	Oil base	P	1
310	0	1	Acrylic latex	Р	1
Grand Total		<u> </u>			14

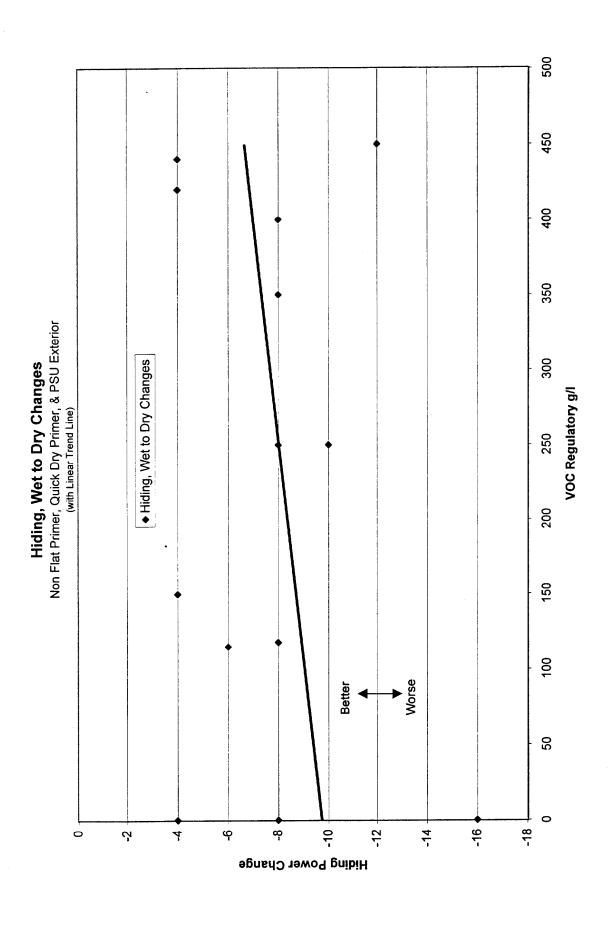

Single component coatings = 9 Multi-component coatings = 1


200 450 400 350 Non Flat Primer, Quick Dry Primer, & PSU Exterior (with Linear Trend Lines) 300 Brushing Properties, Wet **Brushing Properties** Brushing Properties, Dry VOC Regulatory g/l 250 Brushing Properties, Wet Brushing Properties, Dry 200 150 100 20 Worse ဖ 7 0 O ω Leneta Levelness Profile (1 - 9)


Non Flat Primer, Quick Dry Primer, & PSU Exterior 90 degrees F, 30% RH **Dry Time - Dry To Touch** ◆ 50 degrees F, 90% RH (minutes)■ 90 degrees F, 30% RH (minutes) 50 degrees F, 90% RH VOC Regulatory g/I (with Linear Trend Lines) _ Minutes


Dry Time - Dry Hard


Non Flat Primer, Quick Dry Primer, & PSU Exterior
(with Linear Trend Lines)



500 450 400 350 Non Flat Primer, Quick Dry Primer, & PSU Exterior (with Linear Trend Line) 300 ◆ Dry Film Thickness, Tooke VOC Regulatory g/I 250 200 150 100 20 0 Ö 3.5 0.5 2.5 5. က Dry Film Thickness (mils)

Dry Film Thickness

3.14	Contrast Ratio (Cw) Hiding Power	at Spreading Rate of 414 ft2/gal or 3.87 mils WFT	0.942	0.961	296'0	6.973	6.963	826.0	986.0	0.978	0.972	0.946	0.943	0.985	0.967	0.956
2	Dry time, Dry Hard	90 degrees F, 30% RH (minutes)	3.6	3.7	4.2	2.1	39.7	250.9	3.7	5.2	17.7	355.0	2'6	109.2	40.0	6.9
2.2	- One Part Coatings	50 degrees F, 90% RH (minutes)	7.5	10.2	10.5	9.6	359.1	255.1	217.2	21.4	147.4	358.2	21.7	120.3	189.6	125.1
2	Dry time, Dry to	90 degrees F, 30% RH (minutes)	2.7	1.3	3.3	2.1	1.0	1.3	2.1	1.6	2.1	5.5	8.2	6.0	8.3	5.1
2.2	Touch - One Part Coatings	50 degrees F, 90% RH (minutes)	3.3	1.2	2.7	5.7	11.1	1.6	2.1	17.8	3.3	22.5	3.7	3.0	0.6	4.5
2.1	Brushing Properties, Dry	Leneta Levelness Profile, 1 - 9	3	5	2	4	7	-	8	2	4	ļ	3	6	2	4
2.1	Brushing Properties, Wet	Leneta Levelness Profile, 1 - 9	2	က	2	2	7	-	2	-	2	1	2	7	1	2
	Density	lbs/gal	11.21	10.95	11.20	10.73	10.08	11.30	10.42	10.65	10.41	12.10	10.34	11.10	10.82	10.85
	Coarse Particles	Size in Microns	92	40	8	24	8	20	09	76	52	5	04	none	48	09
	Nonvolatile by Weight	%	55.7	50.7	59.0	51.2	48.7	52.8	51.3	59.2	47.9	78.6	64.5	73.6	66.5	64.0
	Polymer Class		Vinyl Polymer Latex	Acrylic Latex	Acrylic Latex	Acrylic Emulsion	Acrylic Latex	Acrylic Emulsion	Acrylic	Acrylic Latex	Acrylic Latex	Alkyd	Alkyd	Urethane	Alkyd	Oil Base
	VOC Content	g/l	0	0	0	٥	115	118	150	250	250	350	400	420	440	450
ol Test ber	Coating Reference Designator		NFP1	PSU2	NFP9	NFP2	NFP6	PSU3	PSU4	NFP15	NFP16	NFP12	QDP4	REF	QDP1	QDP3
Protocol Test Number	Coating Reference Number	Units	301	308	325	310	322	313	319	331	332	328	111	9	101	109

Nonflat Prmer (NFP), Quick Dry Primer (QDP) and Primer Sealer Undercoater (PSU) - EXTERIOR Data Table

	r Applicator s	WW Rod #80	mils	2.6	2.5	3.5	2.8	2.8	2.5	3.5	3.6	2.6	6'9	3.0	3.4	3.6	2.7
	Wet Film/Dry Film/WW & Bar Applicator Gap Relationships	WW Rod #48	mils	2.1	1.9	2.6	2.1	2.2	2.7	2.8	2.4	1.9	3.5	2.3	2.5	1.5	2.3
	Wet Film/Dry Ga	WW Rod #30	mils	1.4	1.6	1.8	1.5	2.1	1.5	2.3	1.7	1.8	2.3	2.4	1.2	1.5	2.3
	S	WW Rod #80	mils	7.5	7.5	7.5	7.5	7.5	9.5	7.5	8.5	7.5	10.5	8.5	8.5	8.5	9.5
	Wet Film Thickness	WW Rod #48	mils	4.5	5.5	5.5	5.5	5.5	7.5	6.5	5.5	5.5	4.5	6.5	6.5	7.5	7.5
	Me	WW Rod #30	mils	4.5	5.5	3.5	3.5	4.5	5.5	4.5	3.5	5.5	3.5	5.5	4.5	4.5	6.5
2.10	1	Vet to Dry		æρ	4	-16	-16	မှ	æ	4	8-	-10	8-	8->	4	4	<-12
2.7	Sag Re	sistance	Notch Clearance in mils	10	12	14	12	18	>24	10	>24	>24	14	>24	2	10	41
2.4	Lev	eling	Scale, 0-10	0	4	0	0	0	0	0	0	0	0	0	9	0	4
3.14	Spread	ling Rate	ft2/gal at 3.87 mil WFT	424	602	396	420	362	378	349	322	387	401	395	438	459	401
ol Test ber		Reference gnator		NFP1	PSU2	NFP9	NFP2	NFP6	PSU3	PSU4	NFP15	NFP16	NFP12	QDP4	REF	QDP1	QDP3
Protocol Test Number		Reference mber	Units	301	308	325	310	322	313	319	331	332	328	111	5	101	109

Nonflat Prmer (NFP), Quick Dry Primer (QDP) and Primer Sealer Undercoater (PSU) - EXTERIOR Data Table

3.10	Dry Film Thickness, Tooke	mils	2.0	2.5	3.2	2.0	1.7	2.3	2.7	2.2	1.8	3.5	4.0	V/N	2.7	2.3
3.2	Appearance and Finish, Coted Panels		smooth, flat	uniform, flat	uniform, flat-satin	smooth, satin	flat, matte	smooth, satin-flat	smooth, flat	smooth, satin-flat	smooth, satin-flat	smooth, eggshell	lledsgge	V/N	smooth, matte	uniform, flat
3.2	Appearance and Finish, Drawdown Charts		smooth, flat	slightly crinkled	flat, uniform	smooth, matte	flat, matte	even, satin-flat	smooth, eggshell	smooth, flat	smooth, satin	smooth, eggshell	smooth, matte	smooth, high gloss	smooth, matte	smooth, matte
ol Test iber	Coating Reference Designator		NFP1	PSU2	NFP9	NFP2	NFP6	PSU3	PSU4	NFP15	NFP16	NFP12	QDP4	REF	QDP1	QDP3
Protocol Test Number	Coating Reference Number	Units	301	308	325	310	322	313	319	331	332	328	ŧ	5	101	109

Nonflat Prmer (NFP), Quick Dry Primer (QDP) and Primer Sealer Undercoater (PSU) - EXTERIOR Data Table

Section 6: Nonflat Topcoat and Quickdry Topcoat - Interior

Total # manufactuers or brands	10
Single component coatings	13
Multi-component coatings	1
Total # coatings	14

Test Summary

Brushing Properties Wet:

• Low VOC coatings exhibited lower performance compared to high VOC coatings. One high VOC coatings exhibited excellent performance.

Brushing Properties Dry:

• Low VOC coatings exhibited lower performance compared to high VOC coatings. One high VOC coatings exhibited excellent performance.

Dry Time - Dry To Touch:

Low VOC coatings exhibited similar dry times at 50 °F and 90% RH and at 90 °F and 30% RH compared to high VOC coatings. Two coatings at 150 g/l and 250 g/l exhibited significantly longer dry times.

Dry Time - Dry Hard:

Low VOC coatings exhibited faster dry times at 50 °F and 90% RH and at 90 °F and 30% RH compared to high VOC coatings.

Contrast Ratio (Hiding Power):

Low VOC coatings exhibited similar performance compared to high VOC coatings.

Spreading Rate:

• Low VOC coatings exhibited lower performance compared to high VOC coatings.

Leveling:

• Low VOC coatings exhibited slightly lower performance compared to high VOC coatings.

Sag Resistance:

Low VOC coatings exhibited slightly higher performance compared to high VOC coatings.

Hiding Wet to Dry Changes:

• Low VOC coatings exhibited slightly lower performance compared to high VOC coatings.

Blocking Resistance:

• Low VOC coatings exhibited similar performance compared to high VOC coatings.

Dry Film Thickness:

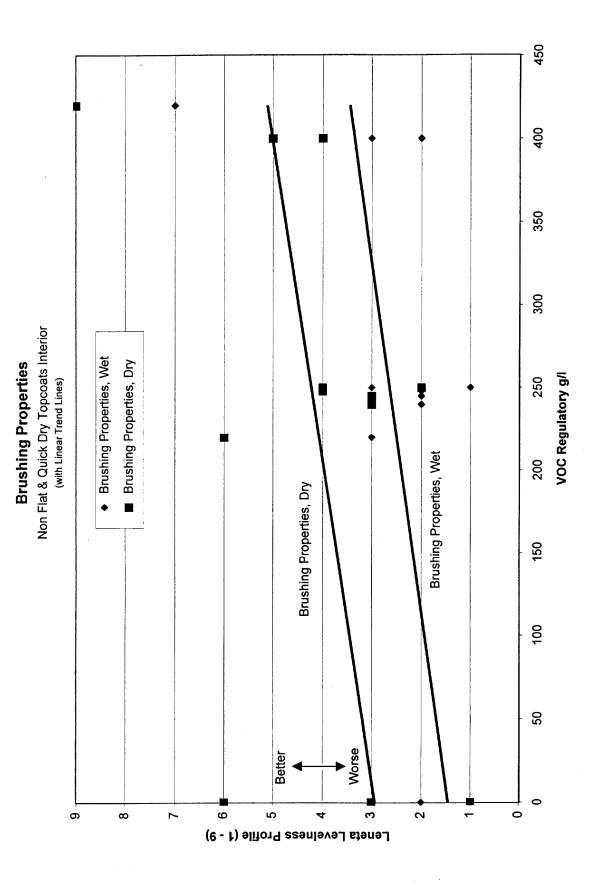
• Low VOC coatings exhibited similar dry film thickness compared to high VOC coatings.

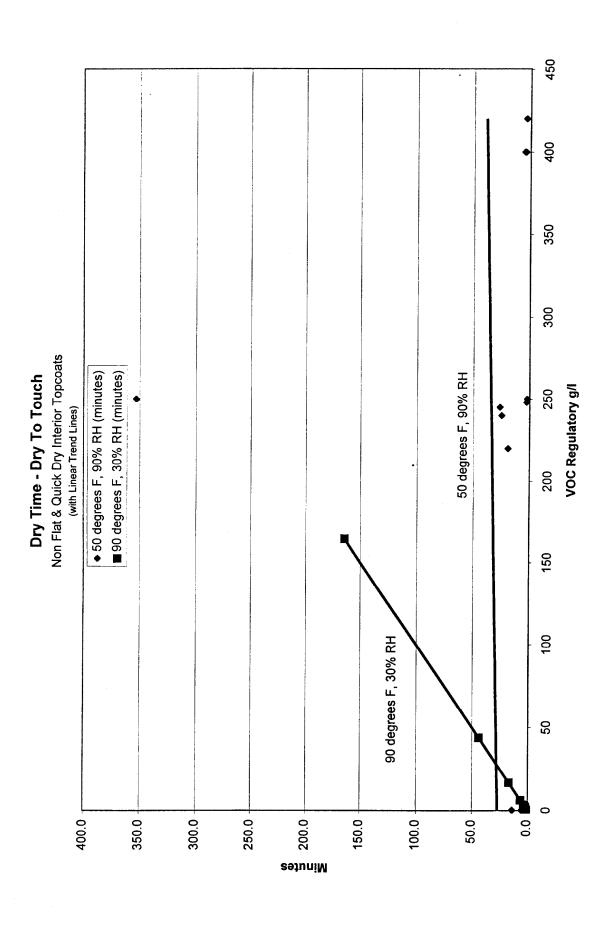
Dirt Removal Ability:

• Low VOC coatings exhibited similar performance compared to high VOC coatings.

Scrub Abrasion Resistance:

• Low VOC coatings exhibited lower performance compared to high VOC coatings.

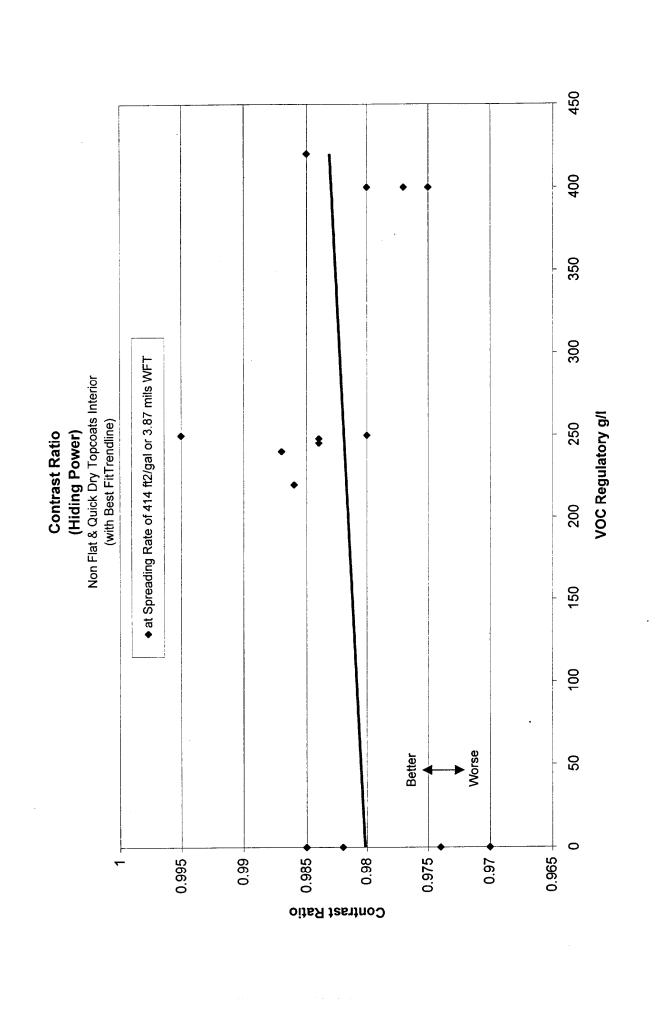

Comments:

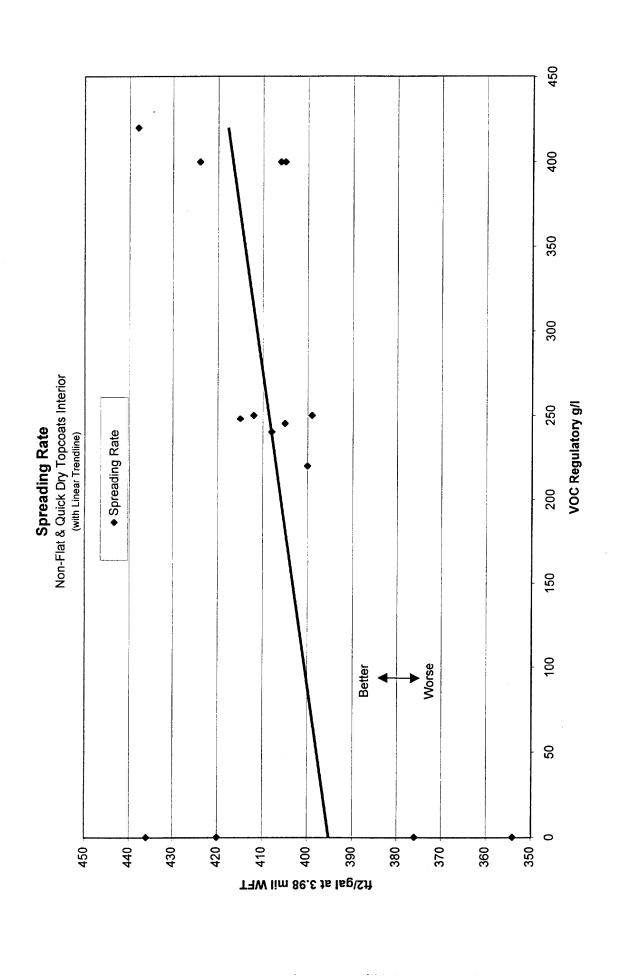

Overall, low VOC coatings exhibited similar performance to high VOC coatings. Low VOC coatings did exhibit faster dry hard times while high VOC coatings exhibited higher scrub abrasion resistance.

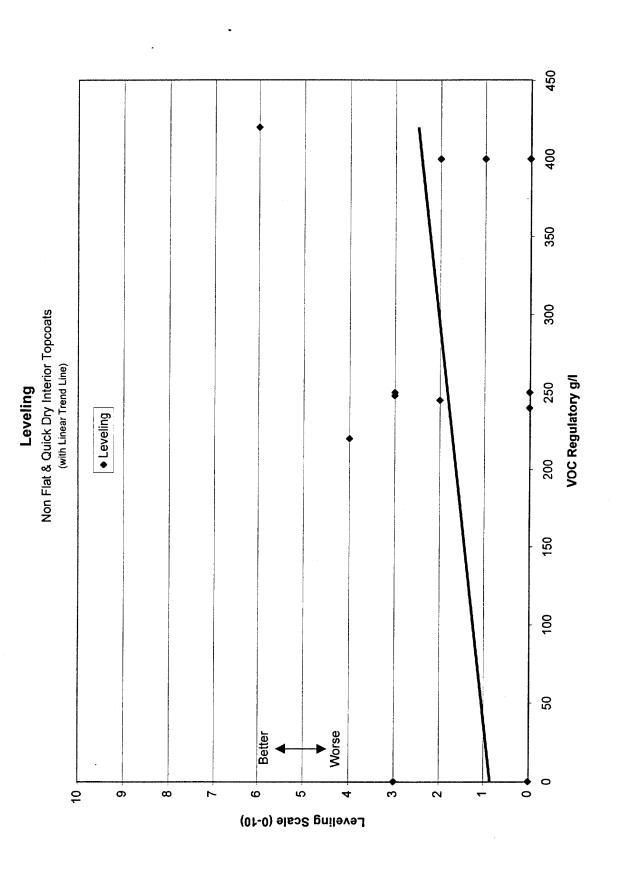
Nonflat Topcoat and Quickdry Topcoat - Interior

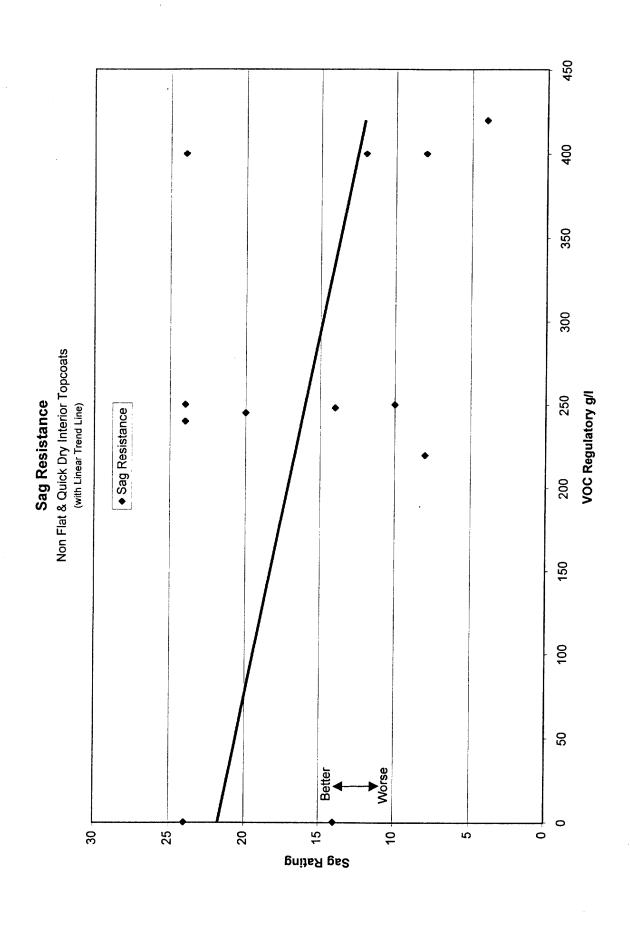
Coating					
Reference	İ				
Designator	VOC, g/l	Part	Polymer Class	Intended Application	Total
219	245	1	Acrylic Latex	T	1
212	240	1	PWP Latex	T	1
104	400	1	Alkyd	TT TT	1
205	220	1	Acrylic Latex	T	1
204	250	1	Acrylic Latex	Т	1
10	420	2	Urethane	T	1
235	0	1	(blank)	T	1
214	250	1	Alkyd	T	1
238	0	1	(blank)	Т	1
211	0	1	Acrylic Emulsion	T	1
112	<400	1	Alkyd	Т	1
203	0	1	Acrylic Emulsion	T	1
208	250	1	Vinyl Acrylic Latex	T	1
207	400	1	(blank)	Т	1
Grand Total	<u> </u>				14

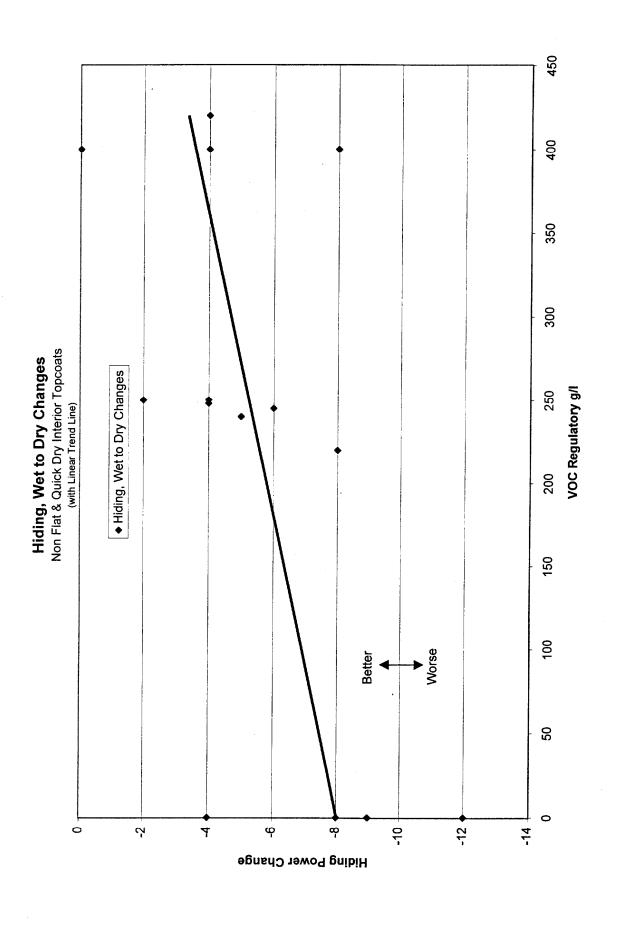
Single component coatings = 13 Multi-component coatings = 1

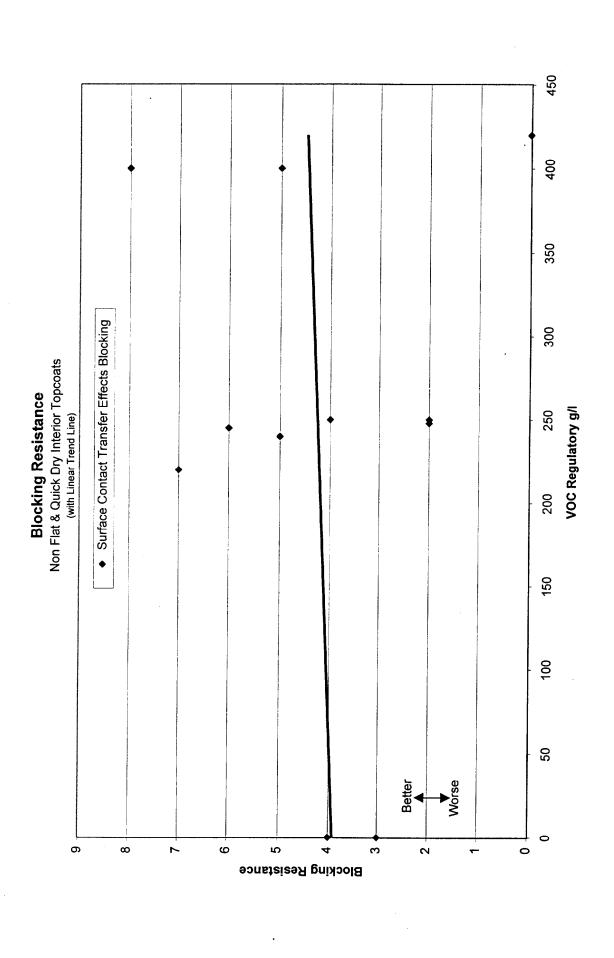


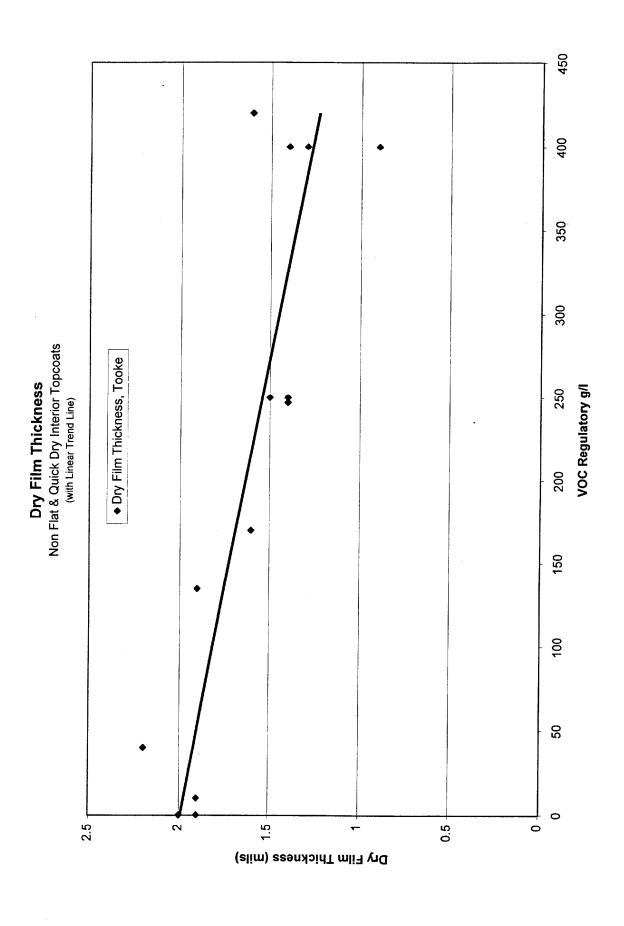

450 400 90 degrees F, 30% RH 350 300 VOC Regulatory g/l 250 ■90 degrees F, 30% RH (minutes) ◆ 50 degrees F, 90% RH (minutes) 200 50 degrees F, 90% RH 150 100 20 0.0 50.0 200.0 100.0 150.0 250.0 400.0 350.0 300.0 Minutes

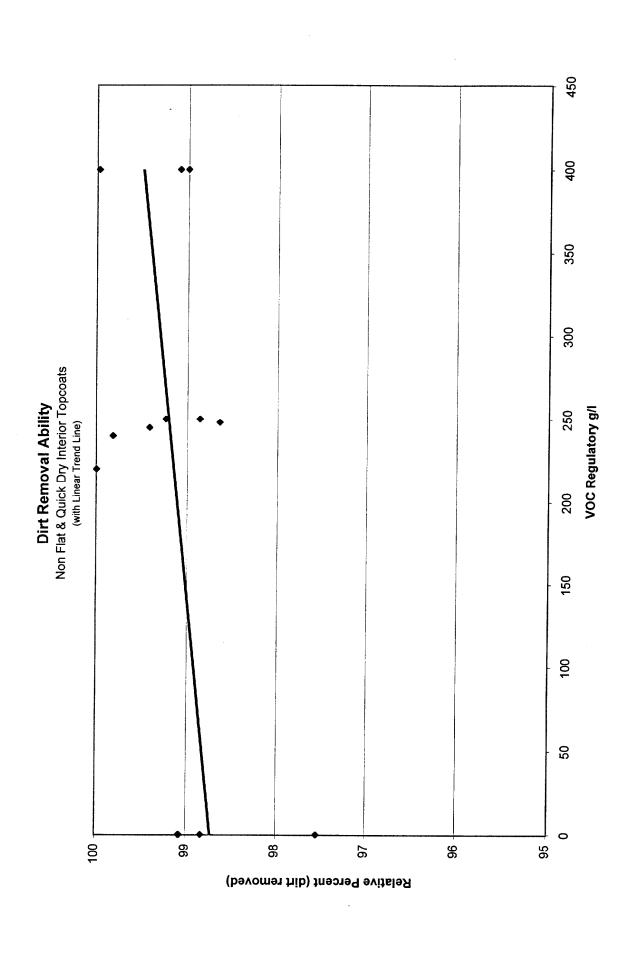

Dry Time - Dry Hard

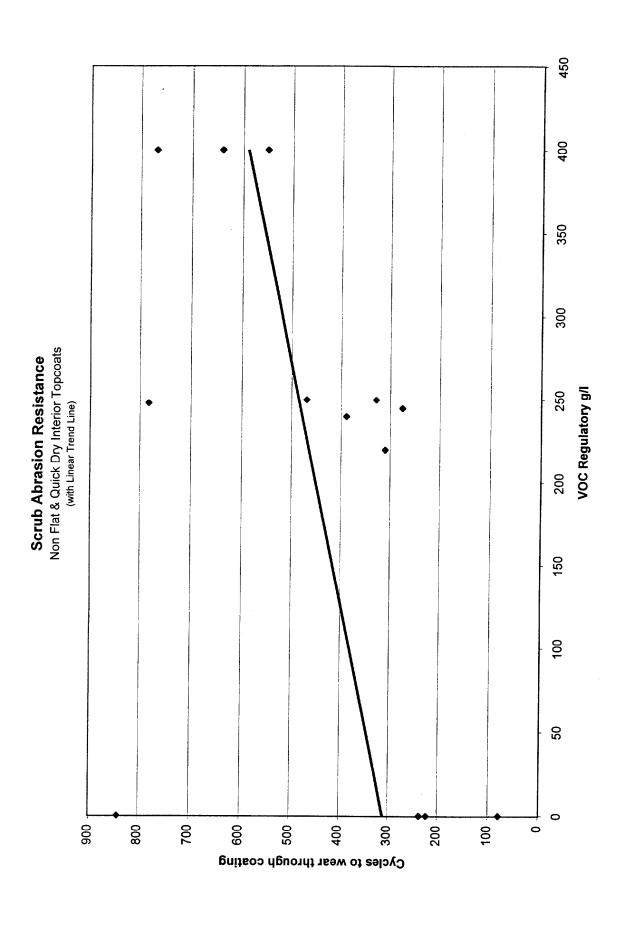

Non Flat & Quick Dry Interior Topcoats


(with Linear Trend Lines)









3.14	Contrast Ratio (Cw) Hiding Power	at Spreading Rate of 414 ft2/gal or 3.87 mils WFT	0.974	0.985	0.97	0.982	0.986	0.987	0.984	0.984	0.995	0.98	0.977	0.975	0.98	0.985
2.2	Dry time, Dry Hard - One Part	90 degrees F, 30% RH (minutes)	12.1	5.5	7.0	23.2	112.4	9.6	104.5	192.9	182.8	62.5	271.2	191.4	167.5	109.2
7	Coatings	50 degrees F, 90% RH (minutes)	8.1	10.2	8.8	17.4	150.5	132.6	360.0	356.1	353.1	247.0	354.6	291.3	359.1	120.3
2.2	Dry time, Dry to	90 degrees F, 30% RH (minutes)	2.2	2.5	6.1	2.2	16.7	2.4	43.9	2.1	164.6	1.6	2.7	3.3	1.6	0.3
.2	Touch - One Part Coatings	50 degrees F, 90% RH (minutes)	3.0	5.1	2.8	13.5	18.7	24.6	26.1	2.1	353.1	1.6	4.2	4.2	3.6	3.0
2.1	Brushing Properties, Dry	Leneta Levelness Profile, 1 - 9	က	9	3	-	9	က	8	4	4	2	4	5	4	6
2.1	Brushing Properties, Wet	Leneta Levelness Profile, 1 - 9	2	2	2	-	3	2	2	2	က	-	က	3	2	7
	Density	lbs/gal	10.96	10.51	10.63	10.34	10.60	10.12	10.47	11.75	12.57	10.55	96.6	10.23	9.98	11.10
	Coarse Particles	Size in Microns	100	င္က	56	100	20	32	9	28	24	56	20	20	16	none
	Nonvolatile by Weight	%	54.7	50.4	48.2	53.5	48.5	43.5	47.7	80.6	82.6	50.1	65.6	64.5	66.3	73.6
	Polymer Class		Acrylic Emulsion	Acrylic Emulsion	Acrylic Latex	Copolymer Latex	Acrylic Latex	Acrylic	Acrylic Latex	Alkyd	Acrylic Latex	Vinyl Acrylic Latex	Alkyd	Alkyd	Alkyd	Urethane
	VOC Content	g/l	0	0	0	0	220	240	245	248	250	250	400	400	400	420
est	Coating Reference Designator		NFT2	NFT9	NFT18	NFT20	NFT4	NFT10	NFT17	NFT12	NFT3	NFT7	QDT2	QDT4	NFT6	REF
Protocol Test Number	Coating Reference Number	Units	203	211	235	238	205	212	219	214	204	208	104	112	207	9

Nonflat Topcoat (NFT) and Quick Dry Topcoat (QDT) - INTERIOR Data Table

		,		Γ	·			Γ			r				Γ		
,	ır Applicator ıs	WW Rod #80	mils	2.8	2.5	2.2	3.2	2.6	1.9	2.6	2.9	5.2	2.4	2.9	3.7	2.9	3.4
	Wet Film/Dry Film/WW & Bar Applicator Gap Relationships	WW Rod #48	mils	2.1	1.6	1.7	2.0	2.1	1.4	1.5	2.6	2.8	2.0	2.0	2.2	2.2	2.5
	Wet Film/Dry Ga	WW Rod #30	mils	1.8	1.5	1.5	1.8	1.6	1.2	1.2	2.2	2.1	1.8	1.2	1.7	1.9	1.2
	S	WW Rod #80	mils	7.5	9.5	7.5	7.5	8.5	8.0	8.5	8.5	9.5	7.5	10.5	8.5	8.5	8.5
	Wet Film Thickness	WW Rod #48	mils	5.5	6.5	5.5	4.5	6.5	5.0	6.5	5.0	6.5	5.5	6.5	6.5	5.8	6.5
	θM	WW Rod #30	mils	4.5	5.5	4.5	4.5	5.5	4.5	3.5	4.5	5.5	4.5	4.5	5.5	5.5	4.5
3.21	Surface Transfer Bloc	r Effects		ဧ	4	4	4	7	5	9	2	4	2	8	5	9	N/A
2.10	Hiding, V Cha		Hiding Indes Change between the Wet and Dry State	-12	6-	4-	8-	8-	ç -	9-	4	4	-2	0	4	8-	4
2.7	Sag Res	sistance	Notch Clearance in mils	>24	>24	14	>24	8	24	20	14	10	>24	8	12	>24	<4
2.4	Leve	eling	Scale, 0-10	0	3	0	0	4	0	2	3	3	0	2	1	0	6
3.14	Spreadi	ng Rate	ft2/gal at 3.87 mil	354	420	436	376	400	408	405	415	412	399	424	405	406	438
est	Refer	Coating Reference Designator		NFT2	NFT9	NFT18	NFT20	NFT4	NFT10	NFT17	NFT12	NFT3	NFT7	QDT2	QDT4	NFT6	REF
Protocol Test Number	Coating Reference Number		Units	203	211	235	238	205	212	219	214	204	208	104	112	207	10

cycles to wear 3.24a Scrub Abrasion 310 842 222 236 389 275 782 469 329 768 640 × 62 551 thruogh coating Resistance w/shim pass 3.9 Film Flexibility Dry Film 3.10 9. 9. ₩. 4. 6. 6. <u>4</u>. 1.2 ٨ 2.1 7 Ξ: Thickness, Chart; 2.1 mils 4 mil drawdown 97.54 60.66 99.42 98.86 99.98 99.08 98.83 99.82 Dirt Removal Relative 99.07 98.64 99.24 100 Ϋ́ 3.7 66 Ability Percent smooth, semi-gloss smooth, semi-gloss smooth, semi-gloss smooth, semi-gloss smooth semi-gloss smooth, eggshell smooth, satin smooth, satin smooth, satin smooth, gloss smooth, satin smooth, flat rough, satin smooth, flat Appearance and 3.2 Finish, Coted **Panels** smooth, semi-gloss uniform, semi-gloss smooth, semi-gloss smooth, semi-gloss smooth, high-gloss uniform, satin-flat smooth, glossy smooth, glossy smooth, glossy smooth, glossy rough, shiny smooth, flat smooth, flat smooth, flat Appearance and 3.2 Finish, Drawdown Charts Coating NFT18 NFT10 NFT20 NFT17 NFT12 NFT2 NFT9 NFT4 NFT3 QDT2 QDT4 NFT6 NFT7 REF Reference Protocol Test Number Designator Coating 203 211 235 238 205 212 219 214 204 208 104 112 207 5 Reference Units Number

Nonflat Topcoat (NFT) and Quick Dry Topcoat (QDT) - INTERIOR Data Table

Section 7: Nonflat Topcoat and Quickdry Topcoat - Exterior

Total # manufactuers or brands	10
Single component coatings	11
Multi-component coatings	2
Total # coatings	13

Test Summary

Brushing Properties Wet:

• Low VOC coatings exhibited lower performance compared to high VOC coatings. One high VOC coatings exhibited excellent performance.

Brushing Properties Dry:

• Low VOC coatings exhibited lower performance compared to high VOC coatings. One high VOC coatings exhibited excellent performance.

Dry Time - Dry To Touch:

Low VOC coatings exhibited similar dry times at 50 °F and 90% RH and at 90 °F and 30% RH compared to high VOC coatings. Two coatings in the 125 to 175 g/l range exhibited significantly longer dry times.

Dry Time - Dry Hard:

• Low VOC coatings exhibited faster dry times at 50 °F and 90% RH and at 90 °F and 30% RH compared to high VOC coatings. Several mid to low VOC coatings exhibited dry times similar to the high VOC coatings.

Contrast Ratio (Hiding Power):

• Low VOC coatings exhibited slightly lower performance compared to high VOC coatings.

Spreading Rate:

• Low VOC coatings exhibited similar performance compared to high VOC coatings.

Leveling:

Low VOC coatings exhibited lower performance compared to high VOC coatings.

Sag Resistance:

• Low VOC coatings exhibited higher performance compared to high VOC coatings.

Hiding Wet to Dry Changes:

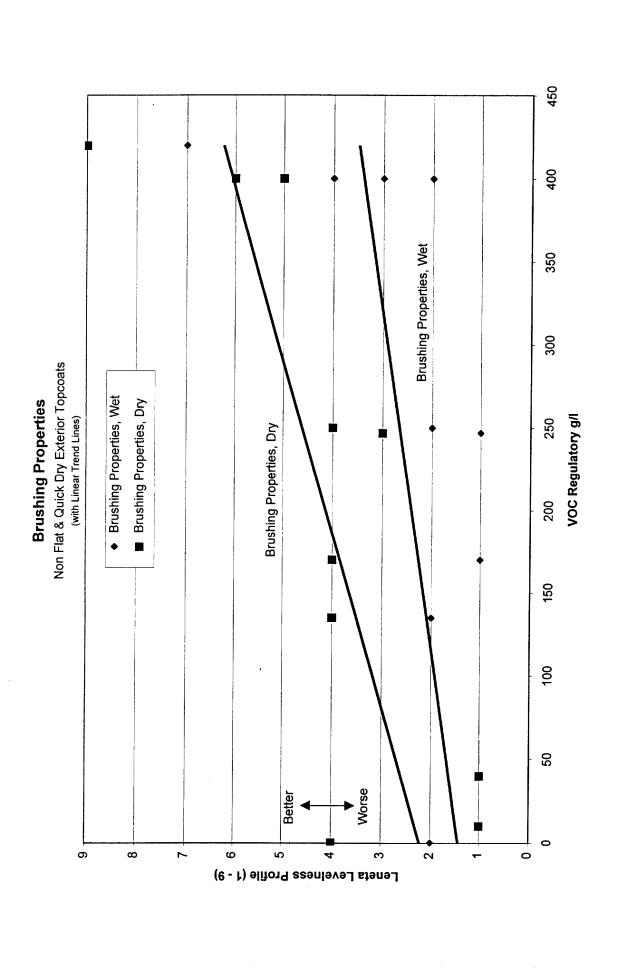
• Low VOC coatings exhibited similar performance compared to high VOC coatings.

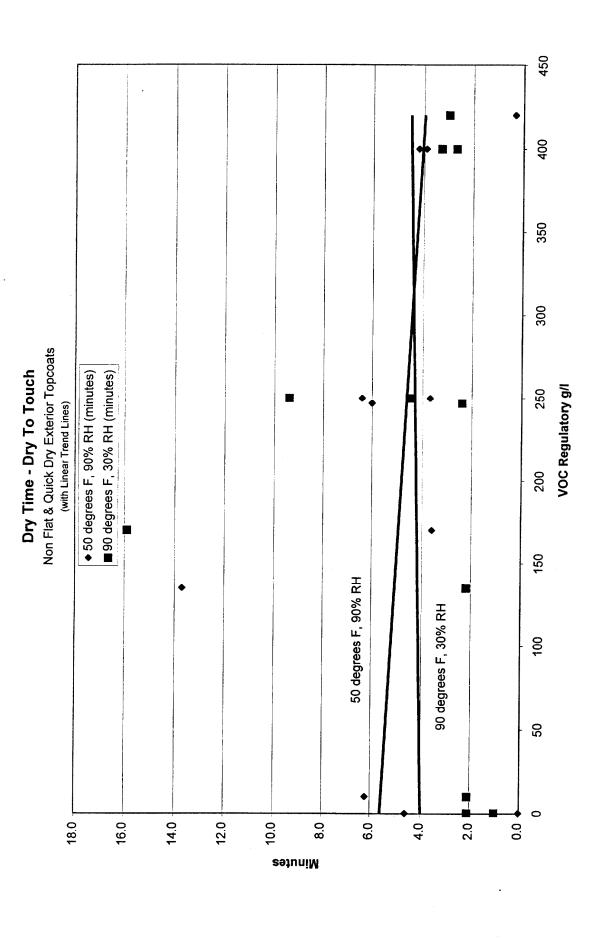
Blocking Resistance:

• Low VOC coatings exhibited slightly higher performance compared to high VOC coatings.

Dry Film Thickness:

• Low VOC coatings exhibited slightly higher dry film thickness compared to high VOC coatings.

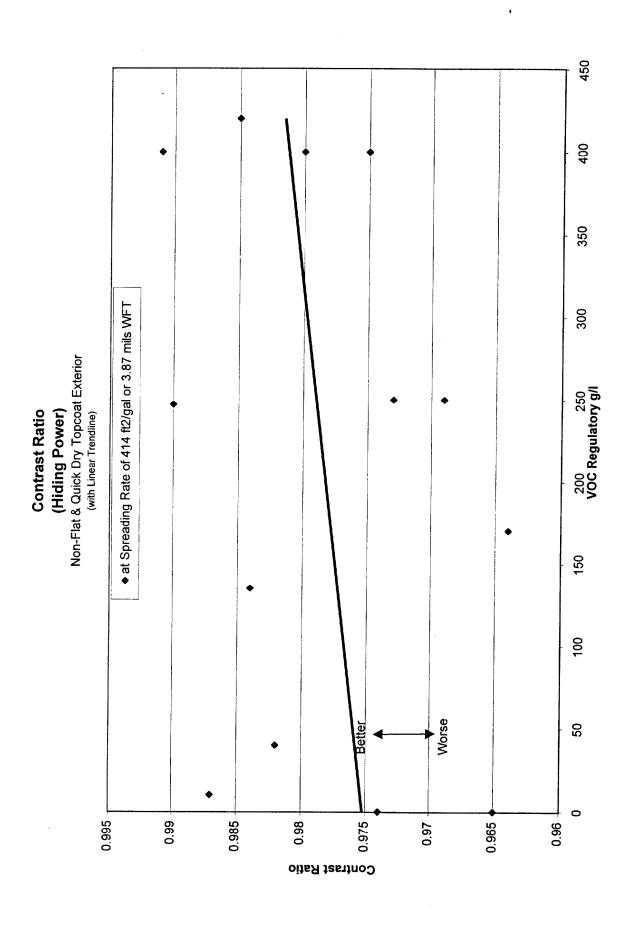

Comments:

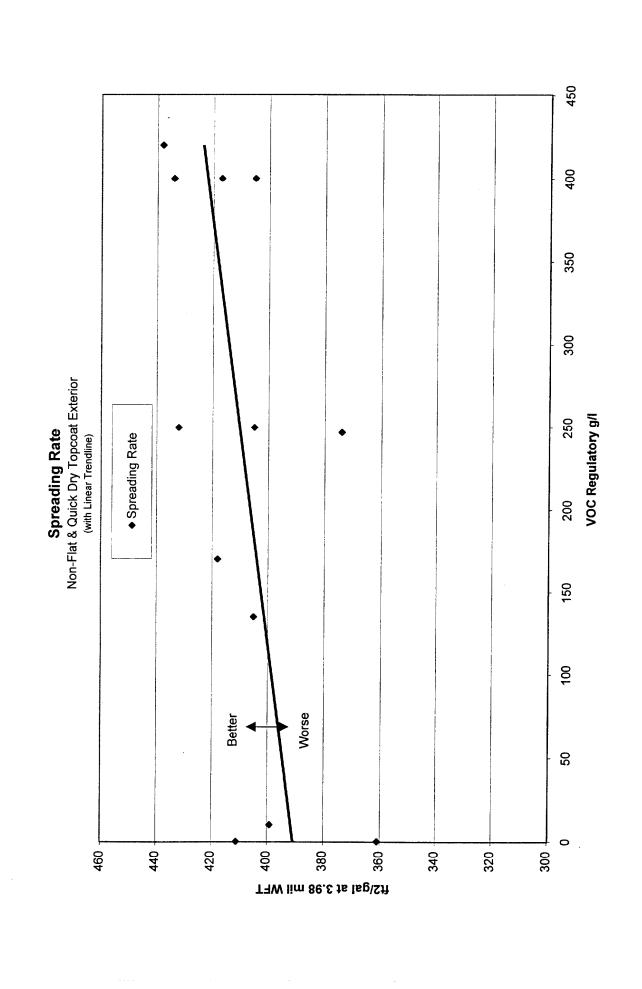

Overall, low VOC coatings exhibited similar performance to high VOC coatings. Low VOC coatings did exhibit significantly lower performance for leveling compared to high VOC coatings.

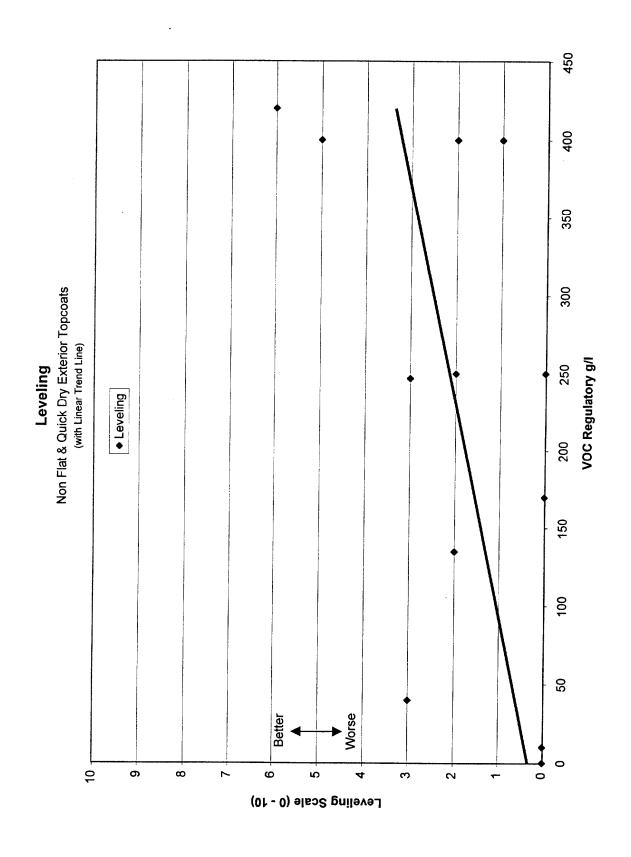
Nonflat Topcoat and Quickdry Topcoat - Exterior

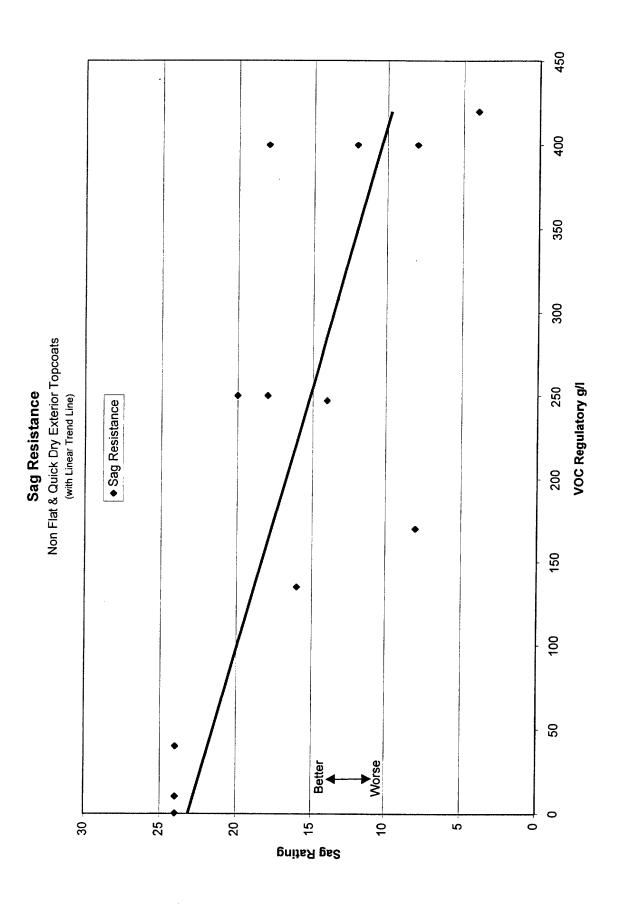
Reference Designator VOC, g/l Part Polymer Class Intended Application Total 215 30 2 Urethane T						
Designator VOC, g/l Part Polymer Class Intended Application Total 215 30 2 Urethane T	Coating					
215 30 2 Urethane T	Reference	i	ł			l
213 247 1 Acrylic Latex T 206 135 1 Acrylic T 102 400 1 Alkyd T 10 420 2 Urethane T 1 218 100 1 (blank) T 1 237 250 1 (blank) T 1 201 0 1 Acrylic Latex T 1 210 0 1 Acrylic emulsion T 1 217 <250	Designator	VOC, g/l	Part	Polymer Class	Intended Application	Total
206 135 1 Acrylic T 1 102 400 1 Alkyd T 1 10 420 2 Urethane T 1 218 100 1 (blank) T 1 237 250 1 (blank) T 1 201 0 1 Acrylic Latex T 1 210 0 1 Acrylic emulsion T 1 217 <250	215	30	2	Urethane	T	1
102 400 1 Alkyd T 1 10 420 2 Urethane T 1 218 100 1 (blank) T 1 237 250 1 (blank) T 1 201 0 1 Acrylic Latex T 1 210 0 1 Acrylic emulsion T 1 217 <250 1 Acrylic emulsion T 1 112 <400 1 Alkyd T 1 110 400 1 Alkyd T 1	213	247	1	Acrylic Latex	1	1
10 420 2 Urethane T 1 218 100 1 (blank) T 1 237 250 1 (blank) T 1 201 0 1 Acrylic Latex T 1 210 0 1 Acrylic emulsion T 1 217 <250 1 Acrylic emulsion T 1 112 <400 1 Alkyd T 1 110 400 1 Alkyd T 1	206	135	1	Acrylic	T	1
218 100 1 (blank) T 1 237 250 1 (blank) T 1 201 0 1 Acrylic Latex T 1 210 0 1 Acrylic emulsion T 1 217 <250	102	400	1	Alkyd	T	1
237 250 1 (blank) T 1 201 0 1 Acrylic Latex T 1 210 0 1 Acrylic emulsion T 1 217 <250	10	420	2	Urethane	T	1
201 0 1 Acrylic Latex T 1 210 0 1 Acrylic emulsion T 1 217 <250	218	100	1	(blank)	T	1
210 0 1 Acrylic emulsion T 1 217 <250	237	250	1	(blank)	Т	1
217 <250	201	0	1	Acrylic Latex	Τ	1
112 <400	210	0	1		T	1
216 <10 1 ?Copolymer latex T 1 110 400 1 Alkyd T 1	217	<250	1	Acrylic emulsion	17	1
110 400 1 Alkyd T 1	112	<400	1	Alkyd	T	1
	216	<10	1	?Copolymer latex	† T	1
Grand Total 13	110	400	1	Alkyd	T	1
	Grand Total			<u> </u>		13

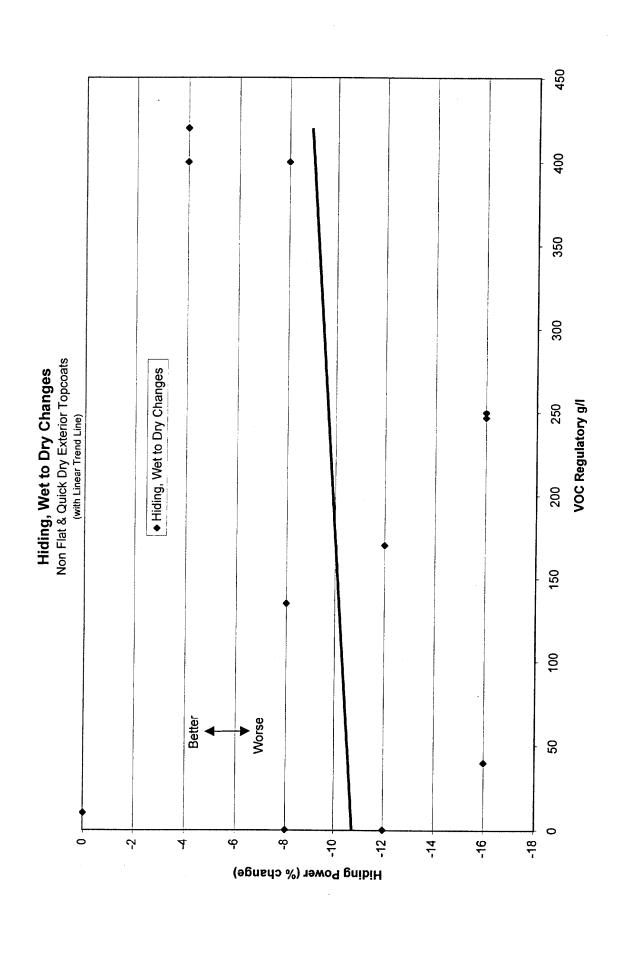
Single component coatings = 11 Multi-component coatings = 2

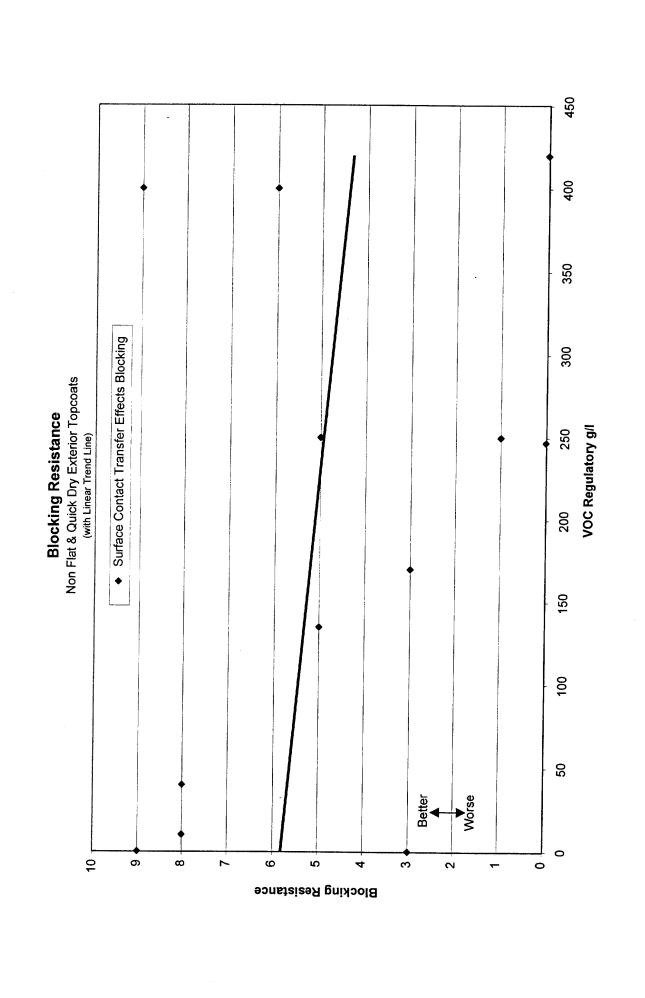


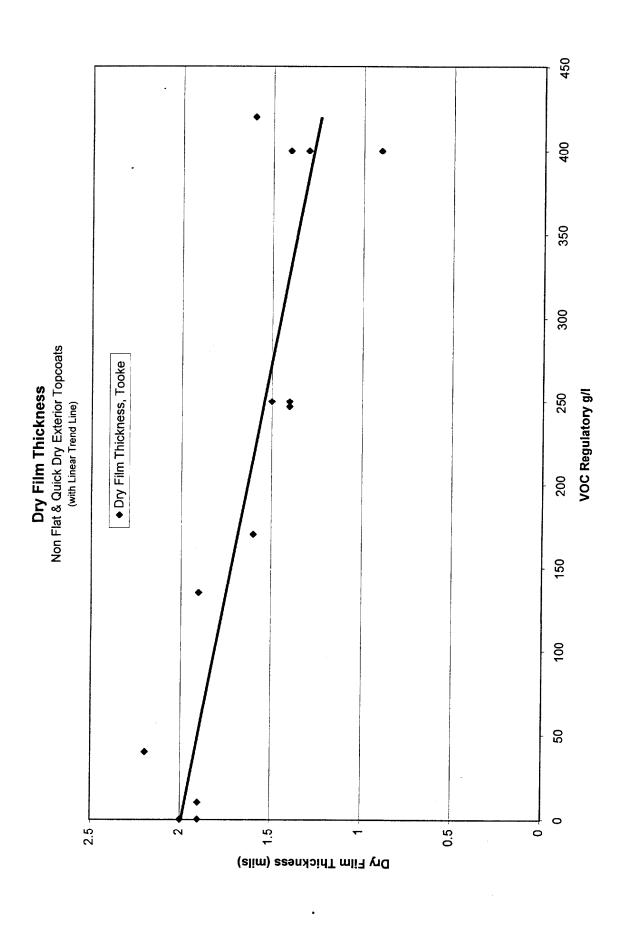



450 Quick Dry Alkyds & Ref Urethane 400 90 degrees F, 30% RH 350 300 ◆ 50 degrees F, 90% RH (minutes) ■90 degrees F, 30% RH (minutes) VOC Regulatory g/I 250 50 degrees F, 90% RH 200 NonFlats (e.g., Acrylic Latex, etc.) 150 100 20 **7** 400.0 350.0 300.0 250.0 150.0 200.0 100.0 50.0 Minutes


Dry Time - Dry Hard


Non Flat & Quick Dry Exterior Topcoats
(with Linear Trend Lines)





Г	<u> </u>	٦			_	-			$\overline{}$			_	т.	Т.	-	
3.14	Contrast Ratio (Cw) Hiding Power	at Spreading Rate of 414 ft2/gal or 3.87 mils WFT	0.974	0.965	0.987	0.982	0.984	96.0	66 0	0.973	696.0	0 991	800	0.075	3000	200.0
2	Dry time, Dry			14.7	4.8	E	29.5	314.1	7.8	21.3	10.9	212.1	233.7	191.4	100.5	133.5
2.2	Hard - One Part Coatings	50 degrees F, 90% RH (minutes)	0.0	358.9	9.5	[3]	124.7	357.6	80.1	64.3	9.1	355.5	357.6	291.3	1203	
2.2	Dry time, Dry to	90 degrees F, 30% RH (minutes)	2.1	1.0	2.1	Ξ	2.2	15.9	2.4	4.5	9.4	2.7	2.7	3.3	0.3	
2.	Touch - One Part Coatings	50 degrees F, 90% RH (minutes)	0.0	4.6	6.2	Ξ	13.7	3.6	6.0	3.7	6.4	4.2	3.9	4.2	3.0	
2.1	Brushing Properties, Dry	Leneta Levelness Profile, 1 - 9	4	4	-	-	4	4	8	4	4	9	9	2	6	
2.1	Brushing Properties, Wet	Leneta Levelness Profile, 1 - 9	4	2	-	-	2	-	-	2	2	2	4	8		
3.1c	Wet Penetration test (Gordon)	Halo Ring, 2r mm	no halo	no halo	2	no halo	е	no halo	no halo	2	9.0	no hafo	no halo	no halo	A/N	
	Density	lbs/gal	10.31	10.74	10.83	10.93	11.12	9.74	10.14	9.82	10.24	9.63	9.78	10.23	11.10	
	Coarse Particles	Size in Microns	88	40	100	8	30	36	90	12	9	16	36	20	none	
	Nonvolatile by Weight	%	53.1	46.4	55.1	59.2	54.0	85.7	43.9	41.8	43.5	64.4	64.6	64.5	73.6	g to test
	Polymer Class		Acrylic Latex	Acrylic Emulsion	Copolymer Latex	Two-Part Urethane	Acrylic Latex/Emulsion	Alkyd, Epoxied Drying Oils	Acrylic Latex	Acrylic Emulsion	Acrylic Latex	Alkyd	Alkyd	Alkyd	Urethane	[1] Insufficient amount of coating to test
	VOC Content	g/l	0	0	10	40	135	170	247	250	250	400	400	400	420	
rest	Coating Reference Designator		NFT1	NFT8	NFT14	NFT13	NFT5	NFT16	NFT11	NFT15	NFT19	QDT1	артз	QDT4	REF	
Protocol Test Number	Coating Reference Number	Units	201	210	216	215	206	218	213	217	237	102	110	112	10	

Nonflat Topcoat (NFT) and Quick Dry Topcoat (QDT) - EXTERIOR Data table

Wet Film/Dry Film/WW & Bar Applicator Gap Relationships WW Rod 2.9 2.4 3.3 3.3 4. 2.1 mils 1.7 3.6 4.3 3.7 3.4 #80 WW Rod 2.2 3.6 2.2 2.0 2.3 1.5 1.7 2.5 mils 3.1 Ξ: 2.1 2.5 #48 WW Rod 1.6 1.5 2.0 1.6 1.2 2.0 2.4 5. 7. 0. mils 1,7 #30 WW Rod 1.5 7.5 7.5 7.5 8.5 7.5 8.5 mils 7.5 8.5 8.5 8.5 #80 Wet Film Thickness WW Rod 5.5 5.5 6.5 6.5 6.5 5.5 4.5 6.5 5.5 5.5 mils #48 WW Rod 4.5 5.5 5.5 4.5 4.5 4.5 mils 4. 5 5.5 3 5.5 4.5 #30 **Surface Contact** 3.21 **Transfer Effects** ĕ ന 6 œ œ S က 0 40 9 6 6 Blocking Hiding Indes Hiding, Wet to Dry Change between 2.10 -12 ထု 0 9 ထု -12 -16 -16 9 ထု ထု 4 4 Changes the Wet and Dry State Notch Clearance 2.7 >24 >24 >24 ×24 Sag Resistance 16 4 8 2 8 5 4 in mils [1] Insufficient amount of coating to test 2.4 Leveling Scale, 0-10 0 0 0 က 8 0 ო 0 8 S ~ 9 ft2/gal at 3.87 mil 411 361 399 374 405 418 405 434 417 405 **Spreading Rate** Ξ 432 438 WFT Coating NFT13 NFT16 NFT15 NFT8 NFT14 NFT11 NFT19 QDT3 NFT. NFT5 QDT1 QDT4 Reference REF Protocol Test Number Designator Coating 215 218 201 210 216 206 213 217 237 102 110 112 Reference Units 5 Number

Nonflat Topcoat (NFT) and Quick Dry Topcoat (QDT) - EXTERIOR Data table

3.9	Film Flexibility		pass	pass	pass	no paint	pass	pass	pass	pass	pass	pass	pass	bass	bass
3.10	Dry Film Thickness, Tooke	mils	1.9	2	1.9	2.2	1.9	1.6	4.1	5:	1.4	6.0	1.3	4.1	1.6
3.2	Appearance and Finish, Coated Panels		smooth, semi-gloss	smooth, flat	rough, satin-flat	no paint	smooth, satin-flat	wrinkled, semi-gloss	smooth, semi-gloss	smooth, satin	smooth, satin	smooth, gloss	smooth, semi-gloss	smooth, semi-gloss	smooth, gloss
3.2	Appearance and Finish, Drawdown Charts		smooth, gloss	smooth, flat	rough, flat	uneven, semi-gloss	smooth, flat	smooth, semi-gloss	smooth, gloss	smooth, gloss	smooth, gloss	smooth, gloss	smooth, gloss	smooth, semi-gloss	smooth, gloss
Fest	Coating Reference Designator		NFT1	NFT8	NFT14	NFT13	NFT5	NFT16	NFT11	NFT15	NFT19	QDT1	QDT3	QDT4	REF
Protocol Test Number	Coating Reference Number	Units	201	210	216	215	206	218	213	217	237	102	110	112	5

Nonflat Topcoat (NFT) and Quick Dry Topcoat (QDT) - EXTERIOR Data table

Section 8: Nonflat System and Quick Dry System - Interior

	1 st Coat	2 nd Coat	3 rd Coat
Total # manufactuers or brands	10	10	2
Single component coatings	7	14	2
Multi-component coatings	?	0	0
Total # coatings	14	14	2

Test Summary

Dry Film Thickness:

• Low VOC coatings exhibited lower dry film thicknesses compared to high VOC coatings.

Adhesion of Topcoats (Tape applied over X-cut):

Low VOC coatings (<250 g/l) exhibited a higher failure rate compared to high VOC coatings.

Household Chemical Resistance (Exposure to 409 for 30 minutes at 75 °F & 50% RH):

- Softening Low VOC coatings (<250 g/l) exhibited moderate softening compared to high VOC coatings with only slight softening.
- Swelling Low VOC coatings exhibited similar performance.
- Adhesion Low VOC coatings (<250 g/l) exhibited a higher failure rate compared to high VOC coatings.

Comments:

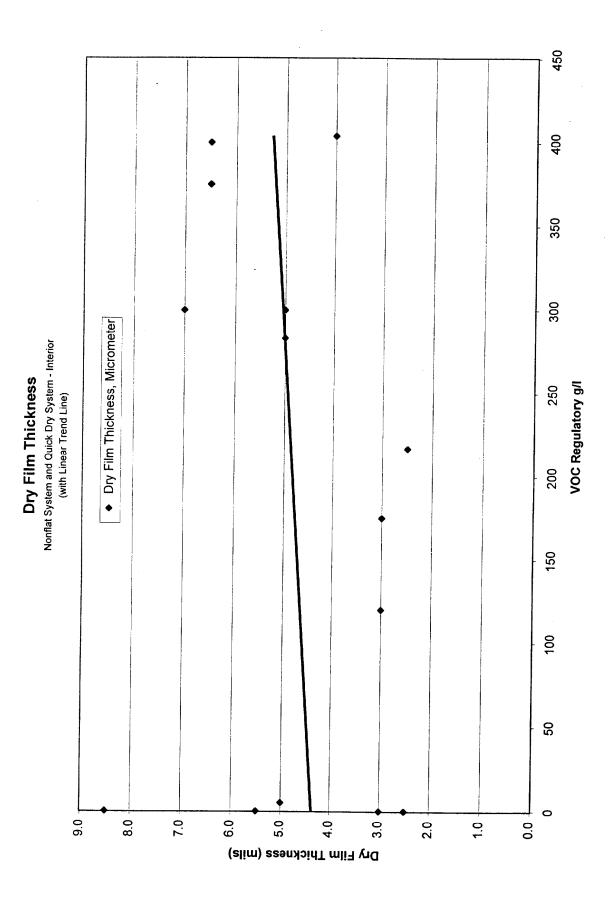
Low VOC coatings exhibited higher failure rates compared to higher VOC coatings for adhesion and softening tests performed. Low VOC coatings did exhibit similar performance in resistance to swelling.

Nonflat System and Quickdry System - Interior - 1st Coat / Primer

Coating Reference Designator	VOC, g/l	Part	Polymer Class	Intended Application	Total
333	189	(blank)	(blank)	Р	1
327	0	1	Acrylic Latex	P	1
103	408	1	Alkyd	Р	1
320	350	1	Alkyd	P	1
321	130	1	Acrylic Latex	P	1
329	0	(blank)	(blank)	P	1
330	350	(blank)	(blank)	Р	1
334	0	(blank)	Acrylic Latex	P	1
326	σ	(blank)	(blank)	P	1
111	400	1	Alkyd	Р	1
315	0	1	Acrylic emulsion	P	2
324	350	1	Alkyd	Р	1
323	350	(blank)	(blank)	_ U	1

Single component coatings = 7 Multi-component coatings = ?

Nonflat System and Quickdry System - Interior - 2nd Coat / Midcoat or Topcoat


Coating Reference Designator	VOC, g/l	Part	Polymer Class	Intended Application	Total
219	245	1	Acrylic Latex	Т	1
212	240	1	PWP Latex	Т	1
104	400	1	Alkyd	T	1
205	220	1	Acrylic Latex	T	1
204	250	1	Acrylic Latex	Τ	1
235	0	1	(blank)	T	1
214	250	1	Alkyd	T	1
238	0	1	(blank)	Т	1
211	0	1	Acrylic Emulsion	T	1
111	400	1	Alkyd	P	1
216	<10	1	?Copolymer latex		1
203	0	1	Acrylic Emulsion	T	- 1
208	250	1	Vinyl Acrylic Latex	T	1
207	400	1	(blank)	T	1
Grand Total					14

Single component coatings = 14 Multi-component coatings = 0

Nonflat System and Quickdry System - Interior - 3rd Coat / Topcoat

Coating Reference Designator	VOC, g/l	Part	Polymer Class	Intended Application	Total
112	<400	1	Alkyd	T	1
208	250	1	Vinyl Acrylic Latex	- 	1
Grand Total		1			2

Single component coatings = 2 Multi-component coatings = 0

Nonflat System (NFS) and Quickdry System (QDS) - INTERIOR Data Table

_																	_
3.1a	Adhesion of Topcoats over New Suraces (Tape)	pass/fail	pass	pass	failed to substrate	test not possible	pass	failed to topcaot	failed to substrate	pass	test not possible	pass	pass	pass	pass	pass	
3.10	Dry Film Thickness, Micrometer	mils	8.5	5.5	2.5	3.0	5.0	3.0	3.0	2.5	5.0	5.0	7.0	6.5	6.5	4.0	
3.2	Appearance and Finish, Coted Panels		ndged, semi-gloss	uniform, flat	unifrom, satin	uniform, eggshell	ridged, satin-flat	unifrom, satin-flat	uniform, semi-gloss	uniform, satin	unifrom, falt	unifrom, satin	uniform, semi-gloss	uniform, semi-gloss	uniform, semi-gloss	uniform, semi-gloss	
	Reference VOC or average	g/l	0	0	0	0	5	120	175	217	283	300	300	375	400	404	
	VOC Content	g/l	0/0	0/0	0/0	0/0	01/0	0/240	130/220	189/245	350/250/250	350/250	350/250	350/400	400/400/400	408/400	
	Polymer Class	Units	Acrylic Latex/Copolymer Latex	Acrylic Latex/Acrylic Emulsion	Acrylic Latex/Acrylic Emulsion	Acrylic Latex/Acrylic Latex	Acrylic/Copolymer Latex	Acrylic Latex/PWP Latex	Acrylic Latex/Acrylic Latex	Acrylic Latex/Acrylic Latex	Alkyd/Vinyl Acrylic Latex/Vinyl Acrylic Latex	Alkyd/Acrylic Latex	Alkyd/Alkyd	Alkyd/Alkyd	Alkyd/Alkyd/Alkyd	Ałkyd/Alkyd	
Protocol Test Number	Coating Reference Designators		334-238	315-203	326-211	329-235	315-216	327-212	321-205	333-219	324-208-208	320-204	330-214	323-207	111-111-112	103-104	[1] Insufficient amount of coating to test
Protoc	System Reference Designator		NFS-02	NFS-03	NFS-10	NFS-13	NFS-17	NFS-11	NFS-06	NFS-19	NFS-08	NFS-04	NFS-14	NFS-07	QDS-04	QDS-02	[1] Insufficient ar

SCAQMD NTS STUDY

3.15	Mildew and Fungus Resistance		10	10	10	01	10	10	10	9	5	10	100	5	9	01	
	•	Delta Gloss 85 degrees	1.60	Ε	-1.20	-1.00	6.70	11.50	-14.80	17.30	5.40	6.60	0.70	1.00	3.60	1.60	
		Delta Gloss 60 degrees	-1.00	Ξ	-1.60	0.70	1.80	14.10	-13.70	-6.60	1.90	10.60	-1.50	00:0	4.40	1.00	
		Delta Gloss 20 degrees	-0.50	Ξ	0.20	0.10	0.20	3.30	-3.10	-3.70	0.20	6.20	-0.60	09:0	2.20	-0.50	
3.3	Household Chemical Resistance	Adhesion, Tape	pass	Ξ	failure of topcaot	pass	pass	test not possible	failed to substrate	pass	test not possible	failed to substrate	pass	pass	pass	pass	
		swelling	slight	Ξ	none	none	none	very slight	slight	slight	none	euou	slight	none	none	euou	
		softening	moderate	E	moderate	stight	moderate	moderate	slight	moderate	moderate	none	slight	slight	slight	none	
		Delta E313 Yellow	0.28	[1]	90'0	-0.41	1.66	0.53	2.79	0.01	1.86	4.95	-6.40	4.46	5.08	6.65	
		Delta CIE	96:0-	[1]	-0.56	-1.32	-4.08	-3.53	4.72	-0.21	-9.57	16.26	21.61	15.05	17.11	22.67	
Protocol Test Number	Coating Reference Designators		334-238	315-203	326-211	329-235	315-216	327-212	321-205	333-219	324-208-208	320-204	330-214	323-207	111-111-112	103-104	[1] Insufficient amount of coating to test
Protoc	System Reference Designator		NFS-02	NFS-03	NFS-10	NFS-13	NFS-17	NFS-11	NFS-06	NFS-19	NFS-08	NFS-04	NFS-14	NFS-07	QDS-04	QDS-02	(1) Insufficient an

Nonflat System (NFS) and Quickdry System (QDS) - INTERIOR Data Table

Section 9: Nonflat System and Quick Dry System - Exterior

	1st Coat	2 nd Coat	3 rd Coat
Total # manufactuers or brands	8	11	2
Single component coatings	10	11	1
Multi-component coatings	?	1	1
Total # coatings	12	12	2

Test Summary

Dry Film Thickness:

• Low VOC coatings exhibited lower dry film thickness compared to high VOC coatings.

Water Resistance (100 °F & 100% RH) - Scratch after two week exposure:

• Low VOC coatings exhibited similar performance to high VOC coatings.

Water Resistance (100 °F & 100% RH) - Gouge after two week exposure:

• Low VOC coatings exhibited similar performance to high VOC coatings.

Water Resistance (100 °F & 100% RH) - Adhesion tape test after two week exposure:

• Low and high VOC coatings exhibited poor performance after exposure. If the coatings were allowed a 24 hour dry time after exposure the low VOC coatings exhibited similar performance compared to high VOC coatings.

Comments:

Low VOC coatings exhibited similar performance to high VOC coatings.

Nonflat System and Quickdry System - Exterior - 1st Coat / Primer

Coating Reference Designator	VOC, g/l	Part	Polymer Class	Intended Application	Tota
328	350	1	Alkyd	Р	1
322	115	1	Acrylic Latex	Р	2
101	440	1	Alkyd	Р	1
331	250	(blank)	(blank)	Р	1
301	1	1	Copolymer Latex	Р	1
325	0	(blank)	(blank)	Р	1
111	400	1	Alkyd	Р	2
315	0	1	Acrylic emulsion	P	1
109	450	1	Oil base	P	1
310	0	1	Acrylic Latex	P	1

Single component coatings = 10 Multi-component coatings = ?

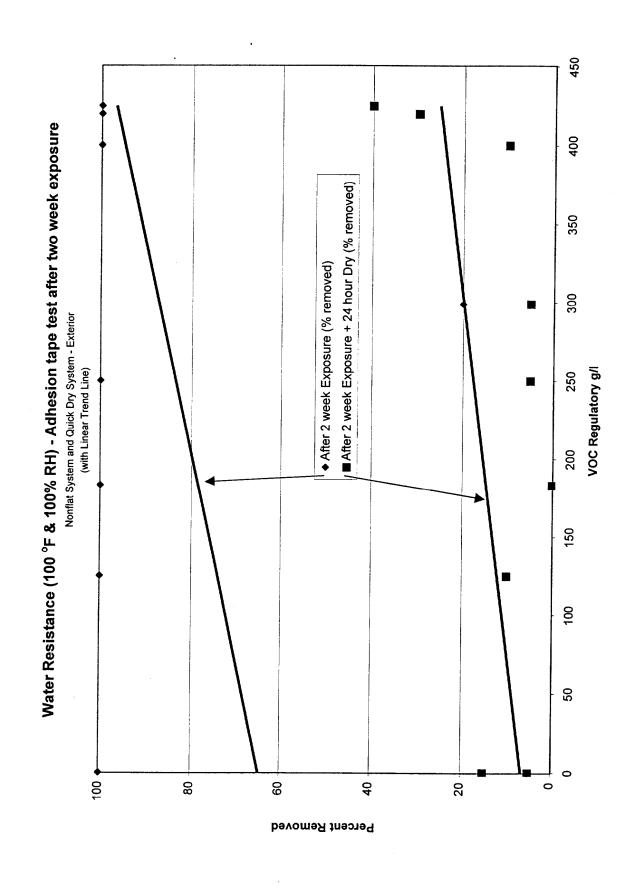
Nonflat System and Quickdry System - Exterior - 2nd Coat - Midcoat / Topcoat

Coating Reference Designator	VOC, g/l	Part	Polymer Class	Intended Application	Total
215	30	2	Urethane	т т	1
213	247	1	Acrylic Latex	T	1
206	135	1	Acrylic	Т	1
102	400	1	Alkyd	1	1
218	100	1	(blank)	1	1
237	250	1	(blank)	T	1
201	0	1	Acrylic Latex	T	1
210	0	1	Acrylic emulsion	T	1
111	400	1	Alkyd	Р	1
217	<250	1	Acrylic emulsion	Т	1
216	<10	1	?Copolymer latex	Т	1
110	400	1	Alkyd	Τ	1
Grand Total				·	12

Single component coatings = 11 Multi-component coatings = 1

Nonflat System and Quickdry System - Exterior - 3rd Coat - Topcoat

Coating Reference Designator	VOC, g/I	Part	Polymer Class	Intended Application	Total
215	30	2	Urethane	Т	1
112	<400	1	Alkyd	Т	1
Grand Total		I			2


Single component coatings = 1 Multi-component coatings = 1

450 400 350 300 Dry Film Thickness, Micrometer Nonflat System and Quick Dry System - Exterior (with Linear Trend Line) VOC Regulatory g/I 250 200 150 9 20 0 ω ^ ဖ 0 Dry Film Thickness (mils)

Dry Film Thickness

450 400 Water Resistance (100 °F & 100% RH) - Scratch after two week exposure 320 300 Nonflat System and Quick Dry System - Exterior (with Linear Trend Line) ■ Scratch: after 2 week | exposure + 24 hour dry ◆ Scratch: after 2 week exposure 250 VOC Regulatory g/I 200 150 100 20 Harder Softer 5H Pencil Hardness Needed to Scratch 유미 등 교육 보고 보고 등 등 H6 ₩ ₩ 7H Н9 3B 4B **2B** 6B |

450 400 Water Resistance (100 °F & 100% RH) - Gouge after two week exposure 350 300 Nonflat System and Quick Dry System - Exterior ■ Gouge: after 2 week exposure + 24 hour Dry ◆ Gouge: after 2 week (with Linear Trend Line) 250 VOC Regulatory g/l exposure 200 150 100 20 Harder 0 Pencil Hardness Needed to Gouge 5H H6 ₩ H9 7H 4B 5B | 6B 3B

Nonflat System (NFS) and Quick Dry System (QDS) - EXTERIOR Data Table

Prot	Protocol Test Number				3.2	3.6	3.10			
System Re Design	Coating Re Design	Polymer	VOC C	Reference aver	Appeara Finish, Pan	Dirt Res	Dry Thick Micro			
		Class	ontent		Coted		ness,	Delta g	Delta gloss, Pretest-2 week	week
		Units	g/t	g/l			mils	20 degrees	60 degrees	85 degrees
NFS-01	301-201	Vinyl Polymer Latex/Acrylic Latex	0/1	0	uniform, satin-flat		3	3.7	9.5	1.6
NFS-09	325-210	Acrylic Latex/Acrylic Emulsion	0/0	0	uniform, flat		3.5	10		
NFS-17	315-216	Acrylic/Copolymer Latex	0/10	5	smooth		N/A	Ξ		
NFS-16	310-215-215	Acrylic Emulsion/Urethane/Urethane	0/30/30	20	N/A	N/A	N/A	N/A	N/A	ΑΝ
NFS-05	322-206	Acrylic Latex/Acrylic Latex-Emulsion	115/135	125	ridged, flat		2	0	-0.5	-2.1
NFS-18	322-217	Acrylic Latex/Acrylic Emulsion	115/250	183	uniform, semigloss		3.5	10.8	10.3	6.3
NFS-15	331-237	Acrylic Latex/Acrylic Latex	250/250	250	satin-flat		3	1.2	10.4	4
QDNFS-01	111-218	Alkyd/Alkyd, Epoxied Drying Olls	400/100	250	some wrinkling at		5	28	33.8	10.1
NFS-12	328-213	Alkyd/Acrylic Latex	350/247	299	uniform, semi-flat		2.5	6.0	7.6	5.7
QDS-04	111-111-112	Alkyd/Alkyd/Alkyd	400/400/400	400	uniform, satin		7.5	4.7	7.4	1.7
QDS-01	101-102	Alkyd/Alkyd	440/400	420	uniform, high gloss		4	27.6	7.5	11.6
QDS-03	109-110	Oil Base/Alkyd	450/400	425	uniform, medium gloss		3	5.6	12.7	1.3
11 Insufficient	11 Insufficient amout of coating to test									

			T .	T	Т	T	Т	Т	Т	Т	V	T	T	8	Т	٦				
			Adhesion, Tape	After 2 week Exposure + 24 hour Dry (% removed)	15%	2%	Ξ	Ϋ́N	10%	%0	5%	50%	5% 5%	10%	30% Topcoat, 5	40%				
		Adhesi	After 2 week Exposure (% removed).	100%	5%	Ξ	N/A	100%	100%	100%	100% Topcoat, 5%	20%	100%	100% Topcoat, 5% 30% Topcoat, 5%	100%					
			Gouge: after 2 Gouge: after 2 Week week exposure + 24 hour Dry	58	58	Ξ	N/A	58	88	58	58	48	80	48	88					
		ness	Gouge: after 2 week exposure	<68	-6B	Ξ	ΑN	89	68	99	46B	<6B	<6B	6 8	<6B					
		Hardness	Scratch: after 2 week exposure + 24 hour dry	<6B	68	[3]	ΝA	<6B	<6B	46B	<6B	89	58	<6B	<6B					
3.8	Environmental Resistance		Scratch: after 2 week exposure	89×	-<	[1]	N/A	e68	<6B	46B	<6B	₹99	×68	- 46B	89					
		Delta E313 Yellow	pretest-2 week+ 24 hour dry	0.41	-0.93	Ξ	Α'N	0.55	0.05	-2.77	-4.07	0.28	-3.39	-0.26	-1.77					
		Delta E31	pretest-2 week	0.33	-0.71	[1]	A/A	0.63	-0.16	-3.15	-4.07	0.18	-3.95	-1.03	-2.42					
		Delta CIE	pretest-2 week+ 24 hour dry	0.88	2.25	[1]	A/N	-0.57	1.1	9.76	8.11	1.27	14.17	1.62	7.12					
		Delta	pretest-2 week	1.16	1.42	[1]	N/A	-1.57	1.1	10.75	13.01	0.31	14.87	3.52	8.96					
						+ 24 hours	85 degrees	5.1			N/A	-3.4	8.5	9.0	12.5	5.7	1.8	8	6.1	
			Delta gloss, Pretest-2 week + 24 hours	60 degrees	11.4			NA	9:0-	13.4	9.1	34.7	7.6	12.6	8.2	16.5				
		Delta gloss,	20 degrees	4.8	0.1	[1]	N/A	0	10.9	1.2	26.6	6.0	6.7	33.4	6.6					
Protocol Test Number	Coating R Design			301-201	325-210	315-216	310-215-215	322-206	322-217	331-237	111-218	328-213	111-111-112	101-102	109-110	[1] Insufficient amout of coating to test				
Protoc	System R Desig			NFS-01	NFS-09	NFS-17	NFS-16	NFS-05	NFS-18	NFS-15	QDNFS-01	NFS-12	QDS-04	QDS-01	QDS-03	[1] Insufficient a				

Above values converted to numeric value only (6B=1, ...9H=17)

NFS QDS Interim Report Tables.xls

3.25a	Weathering Resistance, Outdoor, Wood		
3.25c	Weathering Resistance, Accelerated, Outdoor		
Protocol Test Number	Coating Reference Designators	301-201	325-210
Proto	System Reference Designator	NFS-01	NFS-09

Nonflat System (NFS) and Quick Dry System (QDS) - EXTERIOR Data Table

111-218	328-213	111-111-112	101-102	109-110	[1] Insufficient amout of coating to test
QDNFS-01	NFS-12	CDS-04	QDS-01	co-sab	[1] Insufficient

Š

Ϋ́

310-215-215

322-206

NFS-05 NFS-18 NFS-15

331-237

315-216

NFS-17 NFS-16

Section 10: Water Proofing Sealer - Concrete

Total # manufactuers or brands	3
Single component coatings	4
Multi-component coatings	0
Total # coatings	4

Test Summary

Freeze / Thaw:

• Two coatings tested, one passed (208 g/l) and one failed (115 g/l).

Water Penetration (average time to leak thru face):

• Similar performance observed. One coating (208 g/l) exhibited significantly better performance compared with the other three coatings.

Water Penetration (% of face leaking after 4 hours):

• Similar performance observed. One coating (208 g/l) exhibited significantly better performance compared with the other three coatings.

Comments:

Overall, the coatings tested exhibited similar performance.

Water Proofing Sealer - Concrete

Coating					
Reference					l
Designator	VOC, g/l	Part	Polymer Class	Intended Application	Total
413	<250	1	Acrylic Polymer	W	1
403	115	1	(blank)	W	1
404	208	1	(blank)	W	1
407	250	1	Acrylic emulsion + siloxane	W	1
Grand Total	<u> </u>	<u> </u>			4

Single component coatings = 4 Multi-component coatings = 0

Water Proofing Sealer - Concrete
Hollow Concrete Block 8X8x8
(with Linear Trend Line) VOC Content g/I

Avg time to leak thru face (Minutes)

VOC Content g/I % area of face leaking or wet after 4 hours

Water Proofing Sealer - Concrete
Hollow Concrete Block 8X8X8
(with Linear Trend Line)

						_
Penetration of Water Through	% Area of Face Leaking or Wet at the End of Four Hours	25	4.5	34	40	
Clear Repellant Coatings o Hollow Concrete Blocks	Average Time to Leak Through a Face (minutes)	42	421	35	22	
Appearance and Finish, Coted Panels		no change	no change	no change	no change	
Viscosity, Brookfield, Initial	centipoise	[1]	10.7	N/A	N/A	
Density	lbs/gal	8.36	8.57	8.37	8.31	
Percent Water by Karl fisher Method	%	53.4	92.8	91.7	91.2	to test
Nonvolatile by Weight	%	6	5.5	6.7	7.4	[1] Too viscous to test
Freeze/Thaw	Outcome	fail	pass	N/A	N/A	
rreszerman	Overall Rating	4	10	N/A	N/A	
Polymer Class		Acrylic Polymer	Silicone	Acrylic Emulsion	Acrylic Polymer	
VOC Content	g/l	115	208	250	250	
Coating Reference Designator		WPSC2	WPSC3	WPSC5	WPSC10	
Coating Reference Number	Units	403	404	407	413	
	Water Through Clear Repellant Coatings o Hollow Concrete Blocks Appearance and Finish, Coted Panels Viscosity, Brookfield, Initial Density Percent Water by Karl fisher Method Nonvolatile by Weight Freeze/Thaw Polymer Class VOC Content Coating Reference Designator Coating Reference	Penetration of Water Through Clear Repellant Coatings o Hollow Concrete Blocks Average Time to Leak Through a Face (minutes) Appearance and Finish, Coted Panels Viscosity, Brookfield, Initial Density Ibs/gal Percent Water by Karl fisher Method Nonvolatile by Weight Polymer Class VOC Content Coating Reference Designator Coating Reference Penetration of Water Through Clear Repellant Coatings o Hollow Concrete Blocks Appearance and Finish, Coted Panels Viscosity, Brookfield, Initial Density Density Percent Water by Karl fisher Method Nonvolatile by Weight Polymer Class VOC Content Coating Reference Designator Coating Reference Coating Reference Coating Reference Coating Reference Coating Reference Coating Reference Leaking or Wet at the End of Four Hours Average Time to Leak Through a Face (minutes) Outcome It is at the End of Four Hours Average Time to Leak Through a Face (minutes) Outcome It is at the End of Four Hours Average Time to Leak Through a Face (minutes) Outcome It is at the End of Four Hours Average Time to Leak Through a Face (minutes) Outcome It is at the End of Four Hours It is at the End of Four Hour	Penetration of Water Through Clear Repellant Coatings o Hollow Concrete Blocks Appearance and Finish, Coted Panels Density Density Density Density Density Density Density Percent Water by Karl fisher Method Nonvolatile by Weight Polymer Class VOC Content Coating Reference Designator Coating Reference Designator Coating Reference Coating Reference Coating Reference Designator Coating Reference Coating Refere	Leaking or Wetatthe End of Four Hours	Coating Reference Coat	

Section 11: Water Proofing Sealer - Wood

Total # manufactuers or brands	5
Single component coatings	6
Multi-component coatings	0
Total # coatings	6

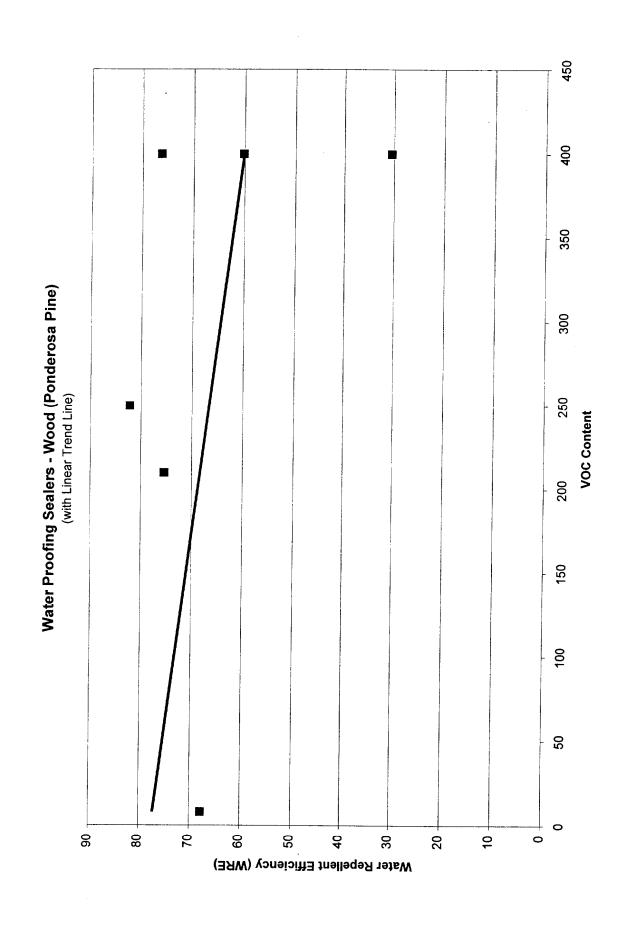
Test Summary

Freeze / Thaw:

• Low VOC coatings exhibited similar performance compared to high VOC coatings.

Water Repellent Efficiency:

• Low VOC coatings exhibited similar performance compared to high VOC coatings.


Comments:

Overall, low VOC coatings exhibited similar performance compared to high VOC coatings for the two performance tests conducted.

Water Proofing Sealer - Wood

Coating Reference					
Designator	VOC, g/l	Part	Polymer Class	Intended Application	Total
402	210	1	Linseed Oil	w	1
405	400	1	(blank)	W	1
408	8	1	Acrylic emulsion	w	1
410	400	1	(blank)	W	1
411	250	1	(blank)	w	1
409	400	1	(blank)	w	1
Grand Total					6

Single component coatings = 6 Multi-component coatings = 0

3.16b	Penetration of Water Through Clear Repellant Coatings on Wood	Water Repellen Efficiency (WRE)	67.8	75.4	82.2	30.5	0.00	60.5	•
3.2	Appearance and Finish, Coted Panels		slightly darkened	slightly darkened	slightly darkened	slightly darkened	slightly darkened	slightly darkened	
2.3	Viscosity, Brookfield, Initial	centipoise	2	37.1	N/A	17	15	N/A	
	Density	ibs/gal	8.36	8.40	6.83	8.24	8.06	6.88	
	Percent Water	%	88.4	86.6	A/N	86.7	79.9	¥,Z	
	Nonvolatile by Weight	%	9.8	8.8	13.2	7.7	9.3	6.2	
1.3	Freeze/Thaw	Outcome	pass	pass	NA	pass	pass	N/A	
	r reeze, man	Overall Rating	10	10	N/A	10	10	ΑΝ	
Protocol Test Number	Polymer Class		Acrylic Emulsion	Linseed Oil	Siloxane	Acrylic Emulsion and Siloxane	High Carbon Resin Emulsion	Silane	Y
Protocol	VOC Content	g/l	8	210	250	400	400	400	
	Coating Reference Designator		WPSC6	WPSC1	WPSC9	WPSC4	WPSC7	WPSC8	
	Coating Reference Number	Units	408	402	411	405	409	410	